Julien B.

Group Meeting, October 11th 2024

Zoology of Honeycomb Floquet codes

Depths & Logical operations

Ideas leading to the Floquet codes

Stabilizer codes

\text {For a stabilizer code }\llbracket n,k,d \rrbracket
\forall s \in \mathcal{S},s\bar{\ket{\psi}} = {\color{red}+} \bar{\ket{\psi}}
k = n-rank(\mathcal{S})
\set{\forall s_i,s_j \in \mathcal{S} \subsetneq\mathcal{P}^n,[s_i,s_j]=0}

The toric code

Subsystem codes

\text {For a subsystem code }\llbracket n,k,d \rrbracket
\text{Add checks s.t. }[c,\mathcal{S}]=0
\forall s \in \mathcal{S},\exists I,\prod_{i\in I}c_i = s

Kitaev inspired version

Kitaev model

With a bunch of local unitaries

Any tricolored lattice

Process

'Free' gates

'Free' gates

'Free' gates

'Free' gates

Equivalent codes

Colour code inspired version

Colour code

CSS code

Decoding comparison

Going Planar

Going Planar

- Surface code approach

- Colour code approach

Surface code

Gidney & Newman

Kesselring & Magdalena de la F.

Colour code

Kesselring & Magdalena de la F.

'Exotic idea' code

Vuillot

Copy of Group meeting

By Julien Bréhier

Copy of Group meeting

  • 1