Logical Entanglement via LS

Good qLDPC codes

Excerpt from Wikipedia

Good

'dqLDPC' codes ?

Standard depolarising noise

Entangling Measurements

First version :

Toric HFC

Just like the Toric Code

The Planar Honeycomb Floquet Codes

Setting boundaries

An error corrected Planar HFC

Naming the operators

Naming the operators

Lattice surgery

Lattice surgery

Lattice surgery on the PHFC

With error correction

With error correction

CNot gate

Init\ket{\bar{0}}_A \xrightarrow{} \mathcal{M} (\bar{X}_A\bar{X}_T)\\ \xrightarrow{} \mathcal{M}(\bar{Z}_C\bar{Z}_A)\xrightarrow{} \mathcal{M}(\bar{X}_A)

CNot gate

Init\ket{\bar{0}}_A \xrightarrow{} \mathcal{M} (\bar{X}_A\bar{X}_T)\\ \xrightarrow{} \mathcal{M}(\bar{Z}_C\bar{Z}_A)\xrightarrow{} \mathcal{M}(\bar{X}_A)
Init\ket{\bar{+}}_A \xrightarrow{} \mathcal{M}(\bar{Z}_C\bar{Z}_A) \\ \xrightarrow{} \mathcal{M} (\bar{X}_A\bar{X}_T)\xrightarrow{} \mathcal{M}(\bar{Z}_A)

CNot gate

CNot gate

C

T

A

\text{CNot}_{C,T}

C

T

A

X_TX_A

C

T

A

Z_CZ_A

C

T

A

X_A

C

T

A

\text{Result}

Scalability

  • Init

  • Entertain 3*d rounds
  • XX
  • Entertain 3*d rounds
  • Split
  • Entertain 3*d rounds
  • ZZ
  • Entertain 3*d rounds
  • Split
  • Entertain 3*d rounds
  • Measure logical ancilla
  • Entertain 3*d rounds
  • Measure logical data

Scalability

  • Init

  • Entertain 3*d rounds
  • XX
  • Entertain 3*d rounds
  • Split
  • ZZ
  • Entertain 3*d rounds
  • Split
  • Measure logical ancilla
  • Entertain 3*d rounds
  • Measure logical data

5700 -> 3800

Current

Easy to get

\text{CNot}_{C,T}

C

T

A

X_TX_A

C

T

A

Z_CZ_T

C

T

A

X_C

C

T

A

X_C

C

T

A

Harder

Copy of Copy of Group meeting

By Julien Bréhier

Copy of Copy of Group meeting

  • 8