Jeanne Colbois PRO
Physicist @ CNRS. Here you find slides for *some* of my presentations, as well as visual abstracts for recent publications.
Jeanne Colbois | Théorie de la Matière Condensée | Institut Néel
An application of tensor networks to classical frustrated magnets
Jeanne Colbois | Théorie de la Matière Condensée | Institut Néel
Samuel Nyckees
Afonso Rufino
Frédéric Mila
An application of tensor networks to classical frustrated magnets
Andrew Smerald
KIT | Germany
Frédéric Mila
EPFL | Switzerland
Frank Verstraete
Ghent University | Belgium
Laurens Vanderstraeten
Ghent University | Belgium
Bram Vanhecke
University of Vienna | Austria
COLBOIS | KASTELEYN MECHANISM | 06.2025
COLBOIS | KASTELEYN MECHANISM | 06.2025
2
COLBOIS | KASTELEYN MECHANISM | 06.2025
2
\(T\)
\(C_V\)
\(T\)
\(m\) (order parameter)
Usual : 2nd order
COLBOIS | KASTELEYN MECHANISM | 06.2025
2
Constraints / competition
\(T\)
\(C_V\)
\(T\)
\(m\) (order parameter)
\(T\)
"disorder" parameter
\(T\)
\(C_V\)
Usual : 2nd order
Kasteleyn
COLBOIS | KASTELEYN MECHANISM | 06.2025
2
Constraints / competition
\(T\)
\(C_V\)
\(T\)
\(m\) (order parameter)
\(T\)
"disorder" parameter
\(T\)
\(C_V\)
\(C_V\)
Usual : 2nd order
\(T\)
wavevector
\(T\)
Kasteleyn
Staircases
COLBOIS | KASTELEYN MECHANISM | 06.2025
2
Constraints / competition
\(T\)
\(C_V\)
\(T\)
\(m\) (order parameter)
\(T\)
"disorder" parameter
\(T\)
\(C_V\)
\(C_V\)
Usual : 2nd order
\(T\)
wavevector
\(T\)
Kasteleyn
Staircases
Today : a (new?) possibility induced by frustration
COLBOIS | KASTELEYN MECHANISM | 06.2025
3
1. Frustration, constraints and Kasteleyn
Goldenfeld & Kadanoff, Science, 284 (1999)
COLBOIS | KASTELEYN MECHANISM | 06.2025
3
1. Frustration, constraints and Kasteleyn
2. Tensor networks for classical spin systems
Goldenfeld & Kadanoff, Science, 284 (1999)
COLBOIS | KASTELEYN MECHANISM | 06.2025
3
1. Frustration, constraints and Kasteleyn
2. Tensor networks for classical spin systems
3. A Kasteleyn-driven staircase
Goldenfeld & Kadanoff, Science, 284 (1999)
COLBOIS | KASTELEYN MECHANISM | 06.2025
3
1. Frustration, constraints and Kasteleyn
2. Tensor networks for classical spin systems
3. A Kasteleyn-driven staircase
Goldenfeld & Kadanoff, Science, 284 (1999)
COLBOIS | KASTELEYN MECHANISM | 06.2025
4
COLBOIS | KASTELEYN MECHANISM | 06.2025
4
2-up 1-down (UUD),
2-down 1-up (DDU)
COLBOIS | KASTELEYN MECHANISM | 06.2025
4
2-up 1-down (UUD),
2-down 1-up (DDU)
COLBOIS | KASTELEYN MECHANISM | 06.2025
4
2-up 1-down (UUD),
2-down 1-up (DDU)
COLBOIS | KASTELEYN MECHANISM | 06.2025
4
2-up 1-down (UUD),
2-down 1-up (DDU)
COLBOIS | KASTELEYN MECHANISM | 06.2025
4
2-up 1-down (UUD),
2-down 1-up (DDU)
Entropy per site
COLBOIS | KASTELEYN MECHANISM | 06.2025
4
G.H. Wannier, PR 79, (1950, 1973)
2-up 1-down (UUD),
2-down 1-up (DDU)
Entropy per site
COLBOIS | KASTELEYN MECHANISM | 06.2025
4
G.H. Wannier, PR 79, (1950, 1973)
K. Kano and S. Naya, Prog. Theor. Phys. 10, (1953)
2-up 1-down (UUD),
2-down 1-up (DDU)
A. Sütö, Z. Phys. B 44, (1981)
W. Apel, H.-U. Everts, J. Stat. Mech, (2011)
Entropy per site
COLBOIS | KASTELEYN MECHANISM | 06.2025
5
C. Castlenovo, R. Moessner, S. L. Sondhi, Nature 451 (2008)
Spin ice in magnetic oxides
\(J \gg T\)
COLBOIS | KASTELEYN MECHANISM | 06.2025
5
C. Castlenovo, R. Moessner, S. L. Sondhi, Nature 451 (2008) (and many others)
Spin ice in magnetic oxides
Divergence-free constraint
Pinched points
Emergent electrodynamics (when violated)
\(J \gg T\)
COLBOIS | KASTELEYN MECHANISM | 06.2025
5
Divergence-free constraint
Pinched points
Emergent electrodynamics (when violated)
Spin ice in magnetic oxides
Frustrated Ising magnets
\(J \gg T\)
C. Castlenovo, R. Moessner, S. L. Sondhi, Nature 451 (2008) (and many others)
see e.g. Kasteleyn (1960), Stephenson (1963), Fisher (1966), Yokoi et al (1986), Smeral et al (2016, 2019)
COLBOIS | KASTELEYN MECHANISM | 06.2025
5
Divergence-free constraint
Pinched points
Emergent electrodynamics (when violated)
C. Castlenovo, R. Moessner, S. L. Sondhi, Nature 451 (2008)
Spin ice in magnetic oxides
Frustrated Ising magnets
Hardcore dimers
Zero-temperature critical point
\(J \gg T\)
see e.g. Kasteleyn (1960), Stephenson (1963), Fisher (1966), Yokoi et al (1986), Smeral et al (2016, 2019)
COLBOIS | KASTELEYN MECHANISM | 06.2025
6
see e.g. Kasteleyn (1960), Stephenson (1963), Fisher (1966), Yokoi et al (1986), Smeral et al (2016, 2019)
COLBOIS | KASTELEYN MECHANISM | 06.2025
6
see e.g. Kasteleyn (1960), Stephenson (1963), Fisher (1966), Yokoi et al (1986), Smeral et al (2016, 2019)
COLBOIS | KASTELEYN MECHANISM | 06.2025
6
see e.g. Kasteleyn (1960), Stephenson (1963), Fisher (1966), Yokoi et al (1986), Smeral et al (2016, 2019)
COLBOIS | KASTELEYN MECHANISM | 06.2025
6
see e.g. Kasteleyn (1960), Stephenson (1963), Fisher (1966), Yokoi et al (1986), Smeral et al (2016, 2019)
COLBOIS | KASTELEYN MECHANISM | 06.2025
6
see e.g. Kasteleyn (1960), Stephenson (1963), Fisher (1966), Yokoi et al (1986), Smeral et al (2016, 2019)
COLBOIS | KASTELEYN MECHANISM | 06.2025
6
see e.g. Kasteleyn (1960), Stephenson (1963), Fisher (1966), Yokoi et al (1986), Smeral et al (2016, 2019)
COLBOIS | KASTELEYN MECHANISM | 06.2025
6
see e.g. Kasteleyn (1960), Stephenson (1963), Fisher (1966), Yokoi et al (1986), Smeral et al (2016, 2019)
COLBOIS | KASTELEYN MECHANISM | 06.2025
6
see e.g. Kasteleyn (1960), Stephenson (1963), Fisher (1966), Yokoi et al (1986), Smeral et al (2016, 2019)
COLBOIS | KASTELEYN MECHANISM | 06.2025
6
Directed
non-crossing
non-terminating
see e.g. Kasteleyn (1960), Stephenson (1963), Fisher (1966), Yokoi et al (1986), Smeral et al (2016, 2019)
COLBOIS | KASTELEYN MECHANISM | 06.2025
6
Directed
non-crossing
non-terminating
Consequences:
- power-law decay of correlations
- height field description
....
see e.g. Kasteleyn (1960), Stephenson (1963), Fisher (1966), Yokoi et al (1986), Smeral et al (2016, 2019)
Nearest-neighbor anisotropic
Smerald & Mila, Scipost (2019)
7
COLBOIS | KASTELEYN MECHANISM | 06.2025
Nearest-neighbor anisotropic
Smerald & Mila, Scipost (2019)
7
COLBOIS | KASTELEYN MECHANISM | 06.2025
Now the only ground state
COLBOIS | KASTELEYN MECHANISM | 06.2025
Double domain wall : NOW EXCITATIONS
Nearest-neighbor anisotropic
Smerald & Mila, Scipost (2019)
7
Constrained limit \(J \gg T, \delta \)
COLBOIS | KASTELEYN MECHANISM | 06.2025
Double domain wall : NOW EXCITATIONS
Constrained limit \(J \gg T, \delta \)
Directed, non-crossing, non terminating
Nearest-neighbor anisotropic
Smerald & Mila, Scipost (2019)
7
COLBOIS | KASTELEYN MECHANISM | 06.2025
Double domain wall : NOW EXCITATIONS
Directed, non-crossing, non terminating
Linear energy cost
Nearest-neighbor anisotropic
Smerald & Mila, Scipost (2019)
7
Constrained limit \(J \gg T, \delta \)
COLBOIS | KASTELEYN MECHANISM | 06.2025
Double domain wall : NOW EXCITATIONS
Directed, non-crossing, non terminating
Linear energy cost
Entropy gain
Nearest-neighbor anisotropic
Smerald & Mila, Scipost (2019)
7
Constrained limit \(J \gg T, \delta \)
8
COLBOIS | KASTELEYN MECHANISM | 06.2025
Double domain wall : NOW EXCITATIONS
Constrained limit \(J \gg T\)
Directed, non-crossing, non terminating
Linear energy cost
Entropy gain
Nearest-neighbor anisotropic
Smerald & Mila, Scipost (2019)
COLBOIS | KASTELEYN MECHANISM | 06.2025
9
Ground state of some 2D classical
constrained model
J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13 (1989)
COLBOIS | KASTELEYN MECHANISM | 06.2025
\(E \propto L \)
J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13 (1989)
EXCITATIONS:
Energy cost : linear in system size
Entropy gain!
9
COLBOIS | KASTELEYN MECHANISM | 06.2025
\(E \propto L \)
J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13 (1989)
EXCITATIONS:
Energy cost : linear in system size
Entropy gain!
\(E \propto L \)
\(F = E - TS\)
\(S \propto L \)
9
COLBOIS | KASTELEYN MECHANISM | 06.2025
\(E \propto L \)
\(F = E - TS\)
\(S \propto L \)
\(T\)
No defects
J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13 (1989)
EXCITATIONS:
Energy cost : linear in system size
Entropy gain!
9
COLBOIS | KASTELEYN MECHANISM | 06.2025
EXCITATIONS:
Energy cost : linear in system size
Entropy gain!
\(E \propto L \)
\(F = E - TS\)
\(S \propto L \)
\(T\)
No defects
J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13 (1989)
9
COLBOIS | KASTELEYN MECHANISM | 06.2025
\(E \propto L \)
\(F = E - TS\)
\(S \propto L \)
\(T\)
No defects
Strings
condense
J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13 (1989)
EXCITATIONS:
Energy cost : linear in system size
Entropy gain!
9
COLBOIS | KASTELEYN MECHANISM | 06.2025
\(E \propto L \)
\(F = E - TS\)
\(S \propto L \)
\(T\)
No defects
Strings
condense
J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13 (1989)
EXCITATIONS:
Energy cost : linear in system size
Entropy gain!
9
COLBOIS | KASTELEYN MECHANISM | 06.2025
\(E \propto L \)
\(F = E - TS\)
\(S \propto L \)
\(T\)
No defects
Strings
condense
J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13 (1989)
EXCITATIONS:
Energy cost : linear in system size
Entropy gain!
9
COLBOIS | KASTELEYN MECHANISM | 06.2025
10
Directed, non-crossing, non-terminating
COLBOIS | KASTELEYN MECHANISM | 06.2025
10
\(T\)
"disorder" parameter
\((T-T_K)^{1/2}\)
Directed, non-crossing, non-terminating
COLBOIS | KASTELEYN MECHANISM | 06.2025
10
\(T\)
"disorder" parameter
\((T-T_K)^{1/2}\)
Mapping to free fermions Hamiltonian
\(T \leftrightarrow\) chemical potential
\(n_{\mathrm{strings}} \leftrightarrow\) fermions density
Directed, non-crossing, non-terminating
COLBOIS | KASTELEYN MECHANISM | 06.2025
11
COLBOIS | KASTELEYN MECHANISM | 06.2025
11
What constraints emerge ?
Can there be macroscopic degeneracy / classical spin liquids beyond fine-tuning ?
Can there be new examples of transitions ?
COLBOIS | KASTELEYN MECHANISM | 06.2025
11
What constraints emerge ?
Can there be macroscopic degeneracy / classical spin liquids beyond fine-tuning ?
Can there be new examples of transitions ?
1. Residual entropy
COLBOIS | KASTELEYN MECHANISM | 06.2025
11
What constraints emerge ?
Can there be macroscopic degeneracy / classical spin liquids beyond fine-tuning ?
Can there be new examples of transitions ?
1. Residual entropy
2. Correlations / structure factors
COLBOIS | KASTELEYN MECHANISM | 06.2025
11
What constraints emerge ?
Can there be macroscopic degeneracy / classical spin liquids beyond fine-tuning ?
Can there be new examples of transitions ?
1. Residual entropy
2. Correlations / structure factors
3. Controlled scaling (finite - size / finite - entanglement)
COLBOIS | KASTELEYN MECHANISM | 06.2025
12
COLBOIS | KASTELEYN MECHANISM | 06.2025
Constraints / frustration
12
COLBOIS | KASTELEYN MECHANISM | 06.2025
Constraints / frustration
Farther neighbor interactions
12
COLBOIS | KASTELEYN MECHANISM | 06.2025
Constraints / frustration
Farther neighbor interactions
Exponential (extensive) number of ground states
12
COLBOIS | KASTELEYN MECHANISM | 06.2025
Constraints / frustration
Farther neighbor interactions
Exponential (extensive) number of ground states
1. Analytical (exact) methods
Planar Ising models
Fine-tuned points
The rest...
12
COLBOIS | KASTELEYN MECHANISM | 06.2025
Constraints / frustration
Farther neighbor interactions
Exponential (extensive) number of ground states
2. Monte Carlo methods
no sign problem (classical)
ergodicity
Planar Ising models
Fine-tuned points
The rest...
12
1. Analytical (exact) methods
COLBOIS | KASTELEYN MECHANISM | 06.2025
Constraints / frustration
Farther neighbor interactions
Exponential (extensive) number of ground states
2. Monte Carlo methods
3. TODAY
Tensor networks
no sign problem (classical)
ergodicity
Planar Ising models
Fine-tuned points
The rest...
12
1. Analytical (exact) methods
COLBOIS | KASTELEYN MECHANISM | 06.2025
COLBOIS | KASTELEYN MECHANISM | 06.2025
Why ?
COLBOIS | KASTELEYN MECHANISM | 06.2025
Why ?
How ?
COLBOIS | KASTELEYN MECHANISM | 06.2025
Why ?
How ?
What is the catch ?
COLBOIS | KASTELEYN MECHANISM | 06.2025
13
COLBOIS | KASTELEYN MECHANISM | 06.2025
13
2. 2D classical is "like" 1D quantum
COLBOIS | KASTELEYN MECHANISM | 06.2025
13
2. 2D classical is "like" 1D quantum
3. Building block for quantum problems : algorithms are already optimized
COLBOIS | KASTELEYN MECHANISM | 06.2025
13
2. 2D classical is "like" 1D quantum
3. Building block for quantum problems : algorithms are already optimized
Infinite size for translation-invariant problems
COLBOIS | KASTELEYN MECHANISM | 06.2025
11
COLBOIS | KASTELEYN MECHANISM | 06.2025
11
COLBOIS | KASTELEYN MECHANISM | 06.2025
11
COLBOIS | KASTELEYN MECHANISM | 06.2025
11
COLBOIS | KASTELEYN MECHANISM | 06.2025
11
"Exact contraction"
COLBOIS | KASTELEYN MECHANISM | 06.2025
11
"Exact contraction"
"Approximate contraction"
COLBOIS | KASTELEYN MECHANISM | 06.2025
12
"Contraction"
Matrix / tensor
Vector
Open legs = number of indices = "rank"
COLBOIS | KASTELEYN MECHANISM | 06.2025
12
"Contraction"
Matrix / tensor
Vector
Open legs = number of indices = "rank"
COLBOIS | KASTELEYN MECHANISM | 06.2025
12
"Contraction"
Matrix / tensor
Vector
Open legs = number of indices = "rank"
COLBOIS | KASTELEYN MECHANISM | 06.2025
12
"Contraction"
Matrix / tensor
Vector
Open legs = number of indices = "rank"
COLBOIS | KASTELEYN MECHANISM | 06.2025
13
R. J. Baxter, J. Math. Phys. 9, 1968
R. Orús, G. Vidal, PRB 78, 2008
T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996
COLBOIS | KASTELEYN MECHANISM | 06.2025
13
R. J. Baxter, J. Math. Phys. 9, 1968
R. Orús, G. Vidal, PRB 78, 2008
T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996
COLBOIS | KASTELEYN MECHANISM | 06.2025
13
R. J. Baxter, J. Math. Phys. 9, 1968
R. Orús, G. Vidal, PRB 78, 2008
T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996
COLBOIS | KASTELEYN MECHANISM | 06.2025
14
COLBOIS | KASTELEYN MECHANISM | 06.2025
14
COLBOIS | KASTELEYN MECHANISM | 06.2025
14
Goldenfeld & Kadanoff, Science, 284 (1999)
COLBOIS | KASTELEYN MECHANISM | 06.2025
14
Goldenfeld & Kadanoff, Science, 284 (1999)
Can we keep only the "main" information ?
COLBOIS | KASTELEYN MECHANISM | 06.2025
R. J. Baxter, J. Math. Phys. 9, 1968
T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996
Fishman et al. PRB 98, 2018
14
COLBOIS | KASTELEYN MECHANISM | 06.2025
R. J. Baxter, J. Math. Phys. 9, 1968
T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996
Fishman et al. PRB 98, 2018
14
COLBOIS | KASTELEYN MECHANISM | 06.2025
R. J. Baxter, J. Math. Phys. 9, 1968
T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996
Fishman et al. PRB 98, 2018
R. J. Baxter, J. Math. Phys. 9, 1968
Orús, Vidal, PRB 78, 2008;
V. Zauner-Stauber et. al. PRB 97,2018;
M. Fishman et. al PRB 98, 2018
14
COLBOIS | KASTELEYN MECHANISM | 06.2025
15
EXPONENTIAL # of PARAMETERS
CONSTANT # of
PARAMETERS (poly. in \(\chi\))
\(\chi\) is the control parameter
COLBOIS | KASTELEYN MECHANISM | 06.2025
15
EXPONENTIAL # of PARAMETERS
CONSTANT # of
PARAMETERS (poly. in \(\chi\))
\(\chi\) is the control parameter
R. J. Baxter, J. Math. Phys. 9, 1968
Orús, Vidal, PRB 78, 2008;
T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996
V. Zauner-Stauber et. al. PRB 97,2018;
M. Fishman et. al PRB 98, 2018
\(\langle m \rangle\) =
COLBOIS | KASTELEYN MECHANISM | 06.2025
15
EXPONENTIAL # of PARAMETERS
CONSTANT # of
PARAMETERS (poly. in \(\chi\))
\(\chi\) is the control parameter
R. J. Baxter, J. Math. Phys. 9, 1968
Orús, Vidal, PRB 78, 2008;
T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996
V. Zauner-Stauber et. al. PRB 97,2018;
M. Fishman et. al PRB 98, 2018
\(\langle m \rangle\) =
Ueda, et al. JSPS 74, 111-124 (2005)
T. Viejira, et al, PRB 104, 235141 (2021)
COLBOIS | KASTELEYN MECHANISM | 06.2025
16
Vanderstraeten et al (2018)
Colbois et al, (2021)
COLBOIS | KASTELEYN MECHANISM | 06.2025
16
Vanderstraeten et al (2018)
Colbois et al, (2021)
Boltzmann
Weight
Kagome
Exact residual entropy with bond dimension 10
Correlation length to \(10^{-4}\)
COLBOIS | KASTELEYN MECHANISM | 06.2025
16
Vanderstraeten et al (2018)
Colbois et al, (2021)
Boltzmann
Weight
Kagome
Exact residual entropy with bond dimension 10
Correlation length to \(10^{-4}\)
3D Ice residual entropy and correlations...
COLBOIS | KASTELEYN MECHANISM | 06.2025
17
Vanhecke, JC et al (2021)
COLBOIS | KASTELEYN MECHANISM | 06.2025
17
Vanhecke, JC et al (2021)
Fails in the presence of
frustration and macroscopic g.s. degeneracy
COLBOIS | KASTELEYN MECHANISM | 06.2025
17
Vanhecke, JC et al (2021)
Fails in the presence of
frustration and macroscopic g.s. degeneracy
B. Vanhecke, JC, et al. PRR 3, (2021)
\(\rightarrow\) in spin glasses
\(\rightarrow \) in translation-invariant frustrated Ising models
\(\rightarrow\) in lattice gas models
\(\rightarrow\) in frustrated XY models
S. A. Akimenko, PRE 107, (2023)
F.F. Song, T.-Y. Lin, G. M. Zhang, PRB (2023)
C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)
Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)
J. G. Liu, L. Wang, P. Zhang, PRL 126, (2021)
COLBOIS | KASTELEYN MECHANISM | 06.2025
18
Vanhecke, JC et al (2021)
Implement the constraint locally.
COLBOIS | KASTELEYN MECHANISM | 06.2025
Vanhecke, JC et al (2021)
18
Implement the constraint locally.
COLBOIS | KASTELEYN MECHANISM | 06.2025
19
Essential idea : Anderson bounds
C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969)
M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975)
B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981)
W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016)
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
COLBOIS | KASTELEYN MECHANISM | 06.2025
19
Essential idea : Anderson bounds
C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969)
M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975)
B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981)
W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016)
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
COLBOIS | KASTELEYN MECHANISM | 06.2025
19
Essential idea : Anderson bounds
C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969)
M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975)
B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981)
W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016)
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
Ground states = tiling of configurations that minimize the local Hamiltonian
COLBOIS | KASTELEYN MECHANISM | 06.2025
19
Essential idea : Anderson bounds
LINEAR PROGRAM:
C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969)
M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975)
B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981)
W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016)
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
Ground states = tiling of configurations that minimize the local Hamiltonian
1. Split the Hamiltonian into clusters that overlap
2. Find the optimal energy lower-bound
1. Split the Hamiltonian into clusters that overlap
COLBOIS | KASTELEYN MECHANISM | 06.2025
19
Essential idea : Anderson bounds
LINEAR PROGRAM:
C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969)
M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975)
B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981)
W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016)
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
Ground states = tiling of configurations that minimize the local Hamiltonian
1. Split the Hamiltonian into clusters that overlap
2. Find the optimal energy lower-bound
3. Contract + extend to finite temperature
COLBOIS | KASTELEYN MECHANISM | 06.2025
19
Essential idea : Anderson bounds
LINEAR PROGRAM:
C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969)
M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975)
B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981)
W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016)
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
Ground states = tiling of configurations that minimize the local Hamiltonian
1. Split the Hamiltonian into clusters that overlap
2. Find the optimal energy lower-bound
3. Contract + extend to finite temperature
COLBOIS | KASTELEYN MECHANISM | 06.2025
COLBOIS | KASTELEYN MECHANISM | 06.2025
I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)
J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)
L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)
Z. Luo et al. Science 363, (2019)
JC et al., PRB 104 (2021)
20
COLBOIS | KASTELEYN MECHANISM | 06.2025
I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)
J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)
L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)
Z. Luo et al. Science 363, (2019)
JC et al., PRB 104 (2021)
20
COLBOIS | KASTELEYN MECHANISM | 06.2025
I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)
J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)
L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)
Z. Luo et al. Science 363, (2019)
JC et al., PRB 104 (2021)
Kagome lattice
20
COLBOIS | KASTELEYN MECHANISM | 06.2025
I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)
J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)
L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)
Z. Luo et al. Science 363, (2019)
JC et al., PRB 104 (2021)
Kagome lattice
3 Kagome sublattices
20
COLBOIS | KASTELEYN MECHANISM | 06.2025
I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)
J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)
L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)
Z. Luo et al. Science 363, (2019)
JC et al., PRB 104 (2021)
Kagome lattice
3 Kagome sublattices
3 triangular sublattices
20
COLBOIS | KASTELEYN MECHANISM | 06.2025
I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)
J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)
L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)
Z. Luo et al. Science 363, (2019)
JC et al., PRB 104 (2021)
Kagome lattice
3 Kagome sublattices
3 triangular sublattices
20
COLBOIS | KASTELEYN MECHANISM | 06.2025
21
JC, B. Vanhecke et. al., PRB 106 (2022)
COLBOIS | KASTELEYN MECHANISM | 06.2025
JC, B. Vanhecke et. al., PRB 106 (2022)
All antiferromagnetic couplings :
3 phases due to the competition (exact g.s. energy)
19
21
COLBOIS | KASTELEYN MECHANISM | 06.2025
JC, B. Vanhecke et. al., PRB 106 (2022)
All antiferromagnetic couplings :
3 phases due to the competition (exact g.s. energy)
21
COLBOIS | KASTELEYN MECHANISM | 06.2025
JC, B. Vanhecke et. al., PRB 106 (2022)
All antiferromagnetic couplings :
3 phases due to the competition (exact g.s. energy)
200 tiles
21
COLBOIS | KASTELEYN MECHANISM | 06.2025
JC, B. Vanhecke et. al., PRB 106 (2022)
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
22
\(\mathbb{Z}_2 \times \mathbb{Z}_3\) symmetry breaking
Dense rows: AF order
COLBOIS | KASTELEYN MECHANISM | 06.2025
JC, B. Vanhecke et. al., PRB 106 (2022)
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
\(\mathbb{Z}_2 \times \mathbb{Z}_3\) symmetry breaking
Dense rows: AF order
Sparse rows: frustrated Ising model on the triangular lattice
EXPONENTIAL NUMBER
22
COLBOIS | KASTELEYN MECHANISM | 06.2025
JC, B. Vanhecke et. al., PRB 106 (2022)
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
\(\mathbb{Z}_2 \times \mathbb{Z}_3\) symmetry breaking
Dense rows: AF order
Sparse rows: frustrated Ising model on the triangular lattice
EXPONENTIAL NUMBER
"Strings" representation
22
COLBOIS | KASTELEYN MECHANISM | 06.2025
23
JC, B. Vanhecke et. al., PRB 106 (2022)
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
\(\mathbb{Z}_2 \times \mathbb{Z}_3\) symmetry breaking
COLBOIS | KASTELEYN MECHANISM | 06.2025
JC, B. Vanhecke et. al., PRB 106 (2022)
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
\(\mathbb{Z}_2 \times \mathbb{Z}_3\) symmetry breaking
DDW Break the dense rows AF order
(Introduce vertical dimers)
23
COLBOIS | KASTELEYN MECHANISM | 06.2025
JC, B. Vanhecke et. al., PRB 106 (2022)
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
\(\mathbb{Z}_2 \times \mathbb{Z}_3\) symmetry breaking
DDW Break the dense rows AF order
(Introduce vertical dimers)
Entropic suppression
("partial order by disorder")
23
COLBOIS | KASTELEYN MECHANISM | 06.2025
JC, B. Vanhecke et. al., PRB 106 (2022)
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
\(\mathbb{Z}_2 \times \mathbb{Z}_3\) symmetry breaking
DDW Break the dense rows AF order
(Introduce vertical dimers)
Entropic suppression
("partial order by disorder")
(Our expectations: two second order phase transitions,
a single first-order or a Kasteleyn transition)
23
COLBOIS | KASTELEYN MECHANISM | 06.2025
JC, B. Vanhecke et. al., PRB 106 (2022)
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
\(\mathbb{Z}_2 \times \mathbb{Z}_3\) symmetry breaking
24
COLBOIS | KASTELEYN MECHANISM | 06.2025
JC, B. Vanhecke et. al., PRB 106 (2022)
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
\(\mathbb{Z}_2 \times \mathbb{Z}_3\) symmetry breaking
Freedom inside the domain wall
Energy cost
Entropic gain
24
COLBOIS | KASTELEYN MECHANISM | 06.2025
JC, B. Vanhecke et. al., PRB 106 (2022)
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
\(\mathbb{Z}_2 \times \mathbb{Z}_3\) symmetry breaking
Freedom inside the domain wall
Energy cost
Entropic gain
Replacing a green string by a DDW
Entropic cost
24
COLBOIS | KASTELEYN MECHANISM | 06.2025
JC, B. Vanhecke et. al., PRB 106 (2022)
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
\(\mathbb{Z}_2 \times \mathbb{Z}_3\) symmetry breaking
Freedom inside the domain wall
Energy cost
Entropic gain
Replacing a green string by a DDW
Entropic cost
Repulsion between domain walls
Energy cost for condensation
24
COLBOIS | KASTELEYN MECHANISM | 06.2025
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
Freedom inside the domain wall
Energy cost
Entropic gain
Replacing a green string by a DDW
Entropic cost
Repulsion between domain walls
Energy cost for condensation
25
\(T\)
COLBOIS | KASTELEYN MECHANISM | 06.2025
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
Freedom inside the domain wall
Energy cost
Entropic gain
Replacing a green string by a DDW
Entropic cost
Repulsion between domain walls
Energy cost for condensation
\(T\)
25
COLBOIS | KASTELEYN MECHANISM | 06.2025
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
Freedom inside the domain wall
Energy cost
Entropic gain
Replacing a green string by a DDW
Entropic cost
Repulsion between domain walls
Energy cost for condensation
\(T\)
25
COLBOIS | KASTELEYN MECHANISM | 06.2025
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
Freedom inside the domain wall
Energy cost
Entropic gain
Replacing a green string by a DDW
Entropic cost
Repulsion between domain walls
Energy cost for condensation
\(T\)
\(T_c^{(1)}\)
\(n_c/n_A = 1\)
\(n_c =0\)
25
COLBOIS | KASTELEYN MECHANISM | 06.2025
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
Freedom inside the domain wall
Energy cost
Entropic gain
Replacing a green string by a DDW
Entropic cost
Repulsion between domain walls
Energy cost for condensation
\(T\)
\(T_c^{(1)}\)
\(T_c^{(2)}\)
\(n_c/n_A = 1\)
\(n_c =0\)
\(n_c/n_A = 2\)
25
COLBOIS | KASTELEYN MECHANISM | 06.2025
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
Freedom inside the domain wall
Energy cost
Entropic gain
Replacing a green string by a DDW
Entropic cost
Repulsion between domain walls
Energy cost for condensation
\(T\)
\(T_c^{(1)}\)
\(n_c/n_A = 1\)
\(n_c =0\)
\(T_c^{(2)}\)
\(n_c/n_A = 2\)
\(T_c^{(3)}\)
\(n_c/n_A = 3\)
25
COLBOIS | KASTELEYN MECHANISM | 06.2025
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
26
COLBOIS | KASTELEYN MECHANISM | 06.2025
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
Series of 1st order transitions
Ratio of string densities takes all integer values
26
COLBOIS | KASTELEYN MECHANISM | 06.2025
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
Ratio of string densities takes all integer values
Series of 1st order transitions
Not a "usual" Devil's staircase:
26
Density of strings is not exactly constant
(not commensurate)
COLBOIS | KASTELEYN MECHANISM | 06.2025
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
Density of strings is not exactly constant
(not commensurate)
Series of 1st order transitions
Not a "usual" Devil's staircase:
Infinite number of locked portions
Ratio of string densities takes all integer values
26
COLBOIS | KASTELEYN MECHANISM | 06.2025
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
27
A. Rufino, S. Nyckees, JC, F. Mila, in preparation
COLBOIS | KASTELEYN MECHANISM | 06.2025
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
27
Finite-\(J\) consequences ?
A. Rufino, S. Nyckees, JC, F. Mila, in preparation
COLBOIS | KASTELEYN MECHANISM | 06.2025
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
27
Finite-\(J\) consequences ?
Other models ?
Yes!
1D quantum / 2D Strings model
A. Rufino, S. Nyckees, JC, F. Mila, in preparation
COLBOIS | KASTELEYN MECHANISM | 06.2025
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
28
A. Rufino, S. Nyckees, JC, F. Mila, in preparation
Tensor network frustration problem
Starting point
Is there always a cell relaxing the frustration? (Hard vs weak frustration)
Can the problem be fixed at the level of the MPO?
Consequences for iPEPS?
Experimentally realizable ?
Ground for quantum models ?
COLBOIS | KASTELEYN MECHANISM | 06.2025
29
Kasteleyn mechanism
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
COLBOIS | KASTELEYN MECHANISM | 06.2025
29
Kasteleyn mechanism
Topological "devil's step"
1. Two kinds of system-spanning strings
2. Internal freedom within strings.
3. Effective repulsion between strings of the same kind
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
COLBOIS | KASTELEYN MECHANISM | 06.2025
29
Kasteleyn mechanism
Topological "devil's step"
1. Two kinds of system-spanning strings
2. Internal freedom within strings.
3. Effective repulsion between strings of the same kind
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
COLBOIS | KASTELEYN MECHANISM | 06.2025
29
Kasteleyn mechanism
Topological "devil's step"
1. Two kinds of system-spanning strings
2. Internal freedom within strings.
3. Effective repulsion between strings of the same kind
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
Thank you!
COLBOIS | KASTELEYN MECHANISM | 06.2025
20
Kasteleyn mechanism
Topological "devil's step"
1. Two kinds of system-spanning strings
2. Internal freedom within strings.
3. Effective repulsion between strings of the same kind
Thank you!
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
COLBOIS | KASTELEYN MECHANISM | 06.2025
COLBOIS | KASTELEYN MECHANISM | 06.2025
COLBOIS | KASTELEYN MECHANISM | 06.2025
Ferro \(J_1\)
AF \(J_2\) in one direction
In 3D :
Macroscopic degeneracy of arrangements for successive ferromagnetic layers
CeSb
von Boehm & Bak, PRB (1980)
COLBOIS | KASTELEYN MECHANISM | 06.2025
von Boehm & Bak, PRB (1980)
Fisher and Selke, PRL (1980)
COLBOIS | KASTELEYN MECHANISM | 06.2025
J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13 (1989)
Adsorption of diatomic molecules (dimers) on crystal surfaces
1
2
3
COLBOIS | KASTELEYN MECHANISM | 06.2025
J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13 (1989)
Adsorption of diatomic molecules (dimers) on crystal surfaces
Hardcore (close-packed) dimers
1
2
3
COLBOIS | KASTELEYN MECHANISM | 06.2025
J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13 (1989)
Adsorption of diatomic molecules (dimers) on crystal surfaces
Hardcore (close-packed) dimers
\(\varepsilon_b\) : cost of putting a dimer on \(b = 1,2,3\)
1
2
3
COLBOIS | KASTELEYN MECHANISM | 06.2025
J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13 (1989)
Constraint : hardcore
COLBOIS | KASTELEYN MECHANISM | 06.2025
J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13 (1989)
Constraint : hardcore
COLBOIS | KASTELEYN MECHANISM | 06.2025
J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13 (1989)
Constraint : hardcore
COLBOIS | KASTELEYN MECHANISM | 06.2025
J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13 (1989)
Constraint : hardcore
COLBOIS | KASTELEYN MECHANISM | 06.2025
J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13 (1989)
Constraint : hardcore
COLBOIS | KASTELEYN MECHANISM | 06.2025
J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13 (1989)
Constraint : hardcore
COLBOIS | KASTELEYN MECHANISM | 06.2025
J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13 (1989)
Constraint : hardcore
COLBOIS | KASTELEYN MECHANISM | 06.2025
J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13 (1989)
Constraint : hardcore
COLBOIS | KASTELEYN MECHANISM | 06.2025
J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13 (1989)
Constraint : hardcore
COLBOIS | KASTELEYN MECHANISM | 06.2025
J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13 (1989)
Constraint : hardcore
10
COLBOIS | KASTELEYN MECHANISM | 06.2025
Contracting the TN of a frustrated model
Numerical problem
Ground-state rule
Cancellation of small and large factors
C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)
Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)
\(\rightarrow\) precision?
J. G. Liu, L. Wang, P. Zhan, PRL 126, (2021)
\(\rightarrow\) log?
(For TN experts)
MPO
The MPO is badly conditioned (e.g. not hermitian, ...). Fix it?
Failure to minimize simultaneously all local Hamiltonians.
B. Vanhecke, JC, et al. PRR 3, (2021)
F.F. Song, T.-Y. Lin, G. M. Zhang, arXiv:2309.05321
COLBOIS | KASTELEYN MECHANISM | 06.2025
COLBOIS | KASTELEYN MECHANISM | 06.2025
Partition function for one site:
Most precise result
Direct access to zero temperature
By Jeanne Colbois
Seminar at CPHT - Host : Karyn Le Hur
Physicist @ CNRS. Here you find slides for *some* of my presentations, as well as visual abstracts for recent publications.