Topological Staircase in a

constrained kagome Ising antiferromagnet

Jeanne Colbois | Théorie de la Matière Condensée | Institut Néel

An application of tensor networks to classical frustrated magnets

Jeanne Colbois | Théorie de la Matière Condensée | Institut Néel

Samuel Nyckees

Afonso Rufino

Frédéric Mila

Topological Staircase in a

constrained kagome Ising antiferromagnet

An application of tensor networks to classical frustrated magnets

Andrew Smerald

KIT | Germany

Frédéric Mila

EPFL | Switzerland

Frank Verstraete

Ghent University | Belgium

Laurens Vanderstraeten

Ghent University | Belgium

Bram Vanhecke

University of Vienna | Austria

COLBOIS | KASTELEYN MECHANISM |  06.2025

COLBOIS | KASTELEYN MECHANISM |  06.2025

Unusual phase transitions Induced by constraints

2

COLBOIS | KASTELEYN MECHANISM |  06.2025

Unusual phase transitions Induced by constraints

2

\(T\)

\(C_V\)

\(T\)

\(m\) (order parameter)

Usual : 2nd order

COLBOIS | KASTELEYN MECHANISM |  06.2025

Unusual phase transitions Induced by constraints

2

Constraints / competition

\(T\)

\(C_V\)

\(T\)

\(m\) (order parameter)

\(T\)

"disorder" parameter

\(T\)

\(C_V\)

Usual : 2nd order

Kasteleyn

COLBOIS | KASTELEYN MECHANISM |  06.2025

Unusual phase transitions Induced by constraints

2

Constraints / competition

\(T\)

\(C_V\)

\(T\)

\(m\) (order parameter)

\(T\)

"disorder" parameter

\(T\)

\(C_V\)

\(C_V\)

Usual : 2nd order

\(T\)

wavevector

\(T\)

Kasteleyn

Staircases

COLBOIS | KASTELEYN MECHANISM |  06.2025

Unusual phase transitions Induced by constraints

2

Constraints / competition

\(T\)

\(C_V\)

\(T\)

\(m\) (order parameter)

\(T\)

"disorder" parameter

\(T\)

\(C_V\)

\(C_V\)

Usual : 2nd order

\(T\)

wavevector

\(T\)

Kasteleyn

Staircases

Today : a (new?) possibility induced by frustration

COLBOIS | KASTELEYN MECHANISM |  06.2025

sCOPE

3

1. Frustration, constraints and Kasteleyn

 

Goldenfeld & Kadanoff, Science, 284 (1999)

COLBOIS | KASTELEYN MECHANISM |  06.2025

sCOPE

3

1. Frustration, constraints and Kasteleyn

 

2. Tensor networks for classical spin systems

 

Goldenfeld & Kadanoff, Science, 284 (1999)

COLBOIS | KASTELEYN MECHANISM |  06.2025

sCOPE

3

1. Frustration, constraints and Kasteleyn

 

2. Tensor networks for classical spin systems

 

3. A Kasteleyn-driven staircase

Goldenfeld & Kadanoff, Science, 284 (1999)

COLBOIS | KASTELEYN MECHANISM |  06.2025

sCOPE

3

1. Frustration, constraints and Kasteleyn

 

2. Tensor networks for classical spin systems

 

3. A Kasteleyn-driven staircase

Goldenfeld & Kadanoff, Science, 284 (1999)

COLBOIS | KASTELEYN MECHANISM |  06.2025

archetypes of frustration

4

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

COLBOIS | KASTELEYN MECHANISM |  06.2025

archetypes of frustration

4

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

2-up 1-down (UUD),

2-down 1-up (DDU)

COLBOIS | KASTELEYN MECHANISM |  06.2025

archetypes of frustration

4

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

2-up 1-down (UUD),

2-down 1-up (DDU)

COLBOIS | KASTELEYN MECHANISM |  06.2025

archetypes of frustration

4

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

2-up 1-down (UUD),

2-down 1-up (DDU)

COLBOIS | KASTELEYN MECHANISM |  06.2025

archetypes of frustration

4

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1
W_{G.S.} = \# \text{ configurations } \gtrsim 2^{N/3}

2-up 1-down (UUD),

2-down 1-up (DDU)

COLBOIS | KASTELEYN MECHANISM |  06.2025

archetypes of frustration

4

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1
W_{G.S.} = \# \text{ configurations } \gtrsim 2^{N/3}
S := \lim_{N \rightarrow \infty} \frac{\ln(W_{\text{G.S.}})}{N}

2-up 1-down (UUD),

2-down 1-up (DDU)

Entropy per site

COLBOIS | KASTELEYN MECHANISM |  06.2025

archetypes of frustration

4

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1
S = 0.3230659...

G.H. Wannier, PR 79, (1950, 1973)

W_{G.S.} = \# \text{ configurations } \gtrsim 2^{N/3}
S := \lim_{N \rightarrow \infty} \frac{\ln(W_{\text{G.S.}})}{N}

2-up 1-down (UUD),

2-down 1-up (DDU)

Entropy per site

COLBOIS | KASTELEYN MECHANISM |  06.2025

archetypes of frustration

4

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1
S = 0.3230659...
S = 0.501833...

G.H. Wannier, PR 79, (1950, 1973)

K. Kano and S. Naya, Prog. Theor. Phys. 10, (1953)

W_{G.S.} = \# \text{ configurations } \gtrsim 2^{N/3}
S := \lim_{N \rightarrow \infty} \frac{\ln(W_{\text{G.S.}})}{N}

2-up 1-down (UUD),

2-down 1-up (DDU)

\xi = 1.2506...

A. Sütö, Z. Phys. B 44, (1981)

W. Apel, H.-U. Everts, J. Stat. Mech, (2011)

Entropy per site

COLBOIS | KASTELEYN MECHANISM |  06.2025

Frustrated magnetism as constrained problems

5

C. Castlenovo, R. Moessner, S. L. Sondhi, Nature 451 (2008)

Spin ice in magnetic oxides

\(J \gg T\)

COLBOIS | KASTELEYN MECHANISM |  06.2025

Frustrated magnetism as constrained problems

5

C. Castlenovo, R. Moessner, S. L. Sondhi, Nature 451 (2008) (and many others)

Spin ice in magnetic oxides

 Divergence-free constraint

 

 

Pinched points

Emergent electrodynamics (when violated)

\(J \gg T\)

COLBOIS | KASTELEYN MECHANISM |  06.2025

Frustrated magnetism as constrained problems

5

 Divergence-free constraint

 

 

Pinched points

Emergent electrodynamics (when violated)

Spin ice in magnetic oxides

Frustrated Ising magnets

\(J \gg T\)

C. Castlenovo, R. Moessner, S. L. Sondhi, Nature 451 (2008) (and many others)

see e.g. Kasteleyn (1960),  Stephenson (1963), Fisher (1966),  Yokoi et al (1986),  Smeral et al (2016, 2019)

COLBOIS | KASTELEYN MECHANISM |  06.2025

Frustrated magnetism as constrained problems

5

 Divergence-free constraint

 

 

Pinched points

Emergent electrodynamics (when violated)

C. Castlenovo, R. Moessner, S. L. Sondhi, Nature 451 (2008)

Spin ice in magnetic oxides

Frustrated Ising magnets

Hardcore dimers

 

 

Zero-temperature critical point

\(J \gg T\)

see e.g. Kasteleyn (1960),  Stephenson (1963), Fisher (1966),  Yokoi et al (1986),  Smeral et al (2016, 2019)

COLBOIS | KASTELEYN MECHANISM |  06.2025

ground state: Strings representation

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

6

see e.g. Kasteleyn (1960),  Stephenson (1963), Fisher (1966),  Yokoi et al (1986),  Smeral et al (2016, 2019)

COLBOIS | KASTELEYN MECHANISM |  06.2025

ground state: Strings representation

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

6

see e.g. Kasteleyn (1960),  Stephenson (1963), Fisher (1966),  Yokoi et al (1986),  Smeral et al (2016, 2019)

COLBOIS | KASTELEYN MECHANISM |  06.2025

6

ground state: Strings representation

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

see e.g. Kasteleyn (1960),  Stephenson (1963), Fisher (1966),  Yokoi et al (1986),  Smeral et al (2016, 2019)

COLBOIS | KASTELEYN MECHANISM |  06.2025

6

ground state: Strings representation

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

see e.g. Kasteleyn (1960),  Stephenson (1963), Fisher (1966),  Yokoi et al (1986),  Smeral et al (2016, 2019)

COLBOIS | KASTELEYN MECHANISM |  06.2025

6

ground state: Strings representation

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

see e.g. Kasteleyn (1960),  Stephenson (1963), Fisher (1966),  Yokoi et al (1986),  Smeral et al (2016, 2019)

COLBOIS | KASTELEYN MECHANISM |  06.2025

6

ground state: Strings representation

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

see e.g. Kasteleyn (1960),  Stephenson (1963), Fisher (1966),  Yokoi et al (1986),  Smeral et al (2016, 2019)

COLBOIS | KASTELEYN MECHANISM |  06.2025

6

ground state: Strings representation

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

see e.g. Kasteleyn (1960),  Stephenson (1963), Fisher (1966),  Yokoi et al (1986),  Smeral et al (2016, 2019)

COLBOIS | KASTELEYN MECHANISM |  06.2025

6

ground state: Strings representation

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

see e.g. Kasteleyn (1960),  Stephenson (1963), Fisher (1966),  Yokoi et al (1986),  Smeral et al (2016, 2019)

COLBOIS | KASTELEYN MECHANISM |  06.2025

6

ground state: Strings representation

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

Directed

non-crossing

non-terminating 

see e.g. Kasteleyn (1960),  Stephenson (1963), Fisher (1966),  Yokoi et al (1986),  Smeral et al (2016, 2019)

COLBOIS | KASTELEYN MECHANISM |  06.2025

6

ground state: Strings representation

H = J\sum_{\langle i,j \rangle} \sigma_i \sigma_j \qquad \sigma_i = \pm 1

Directed

non-crossing

non-terminating 

Consequences:

- power-law decay of correlations

- height field description

....

see e.g. Kasteleyn (1960),  Stephenson (1963), Fisher (1966),  Yokoi et al (1986),  Smeral et al (2016, 2019)

Perturbing away from the fine-tuned point

Nearest-neighbor anisotropic

Smerald & Mila, Scipost (2019)

7

COLBOIS | KASTELEYN MECHANISM |  06.2025

Perturbing away from the fine-tuned point

Nearest-neighbor anisotropic

Smerald & Mila, Scipost (2019)

7

COLBOIS | KASTELEYN MECHANISM |  06.2025

Now the only ground state

COLBOIS | KASTELEYN MECHANISM |  06.2025

Double domain wall : NOW EXCITATIONS

Perturbing away from the fine-tuned point

Nearest-neighbor anisotropic

Smerald & Mila, Scipost (2019)

7

Constrained limit \(J \gg T, \delta \)

COLBOIS | KASTELEYN MECHANISM |  06.2025

Double domain wall : NOW EXCITATIONS

Constrained limit \(J \gg T, \delta \)

Directed, non-crossing, non terminating

 

 

Perturbing away from the fine-tuned point

Nearest-neighbor anisotropic

Smerald & Mila, Scipost (2019)

7

COLBOIS | KASTELEYN MECHANISM |  06.2025

Double domain wall : NOW EXCITATIONS

Directed, non-crossing, non terminating

Linear energy cost

 

Perturbing away from the fine-tuned point

Nearest-neighbor anisotropic

Smerald & Mila, Scipost (2019)

7

Constrained limit \(J \gg T, \delta \)

COLBOIS | KASTELEYN MECHANISM |  06.2025

Double domain wall : NOW EXCITATIONS

Directed, non-crossing, non terminating

Linear energy cost

Entropy gain

Perturbing away from the fine-tuned point

Nearest-neighbor anisotropic

Smerald & Mila, Scipost (2019)

7

Constrained limit \(J \gg T, \delta \)

8

COLBOIS | KASTELEYN MECHANISM |  06.2025

Double domain wall : NOW EXCITATIONS

Constrained limit \(J \gg T\)

Directed, non-crossing, non terminating

Linear energy cost

Entropy gain

Kasteleyn transition

Nearest-neighbor anisotropic

Smerald & Mila, Scipost (2019)

COLBOIS | KASTELEYN MECHANISM |  06.2025

Kasteleyn mechanism

9

Ground state of some 2D classical

constrained model

J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13  (1989)

COLBOIS | KASTELEYN MECHANISM |  06.2025

\(E \propto L \)

J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13  (1989)

EXCITATIONS:

  • Directed, non-crossing, non-terminating

Energy cost : linear in system size

Entropy gain!

Kasteleyn mechanism

9

COLBOIS | KASTELEYN MECHANISM |  06.2025

\(E \propto L \)

J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13  (1989)

EXCITATIONS:

  • Directed, non-crossing, non-terminating

Energy cost : linear in system size

Entropy gain!

\(E \propto L \)

\(F = E - TS\)

\(S \propto L \)

Kasteleyn mechanism

9

COLBOIS | KASTELEYN MECHANISM |  06.2025

\(E \propto L \)

\(F = E - TS\)

\(S \propto L \)

\(T\)

No defects

J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13  (1989)

EXCITATIONS:

  • Directed, non-crossing, non-terminating

Energy cost : linear in system size

Entropy gain!

Kasteleyn mechanism

9

COLBOIS | KASTELEYN MECHANISM |  06.2025

EXCITATIONS:

  • Directed, non-crossing, non-terminating

Energy cost : linear in system size

Entropy gain!

\(E \propto L \)

\(F = E - TS\)

\(S \propto L \)

\(T\)

No defects

J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13  (1989)

Kasteleyn mechanism

9

COLBOIS | KASTELEYN MECHANISM |  06.2025

\(E \propto L \)

\(F = E - TS\)

\(S \propto L \)

\(T\)

No defects

Strings

condense

J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13  (1989)

EXCITATIONS:

  • Directed, non-crossing, non-terminating

Energy cost : linear in system size

Entropy gain!

Kasteleyn mechanism

9

COLBOIS | KASTELEYN MECHANISM |  06.2025

\(E \propto L \)

\(F = E - TS\)

\(S \propto L \)

\(T\)

No defects

Strings

condense

J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13  (1989)

EXCITATIONS:

  • Directed, non-crossing, non-terminating

Energy cost : linear in system size

Entropy gain!

Kasteleyn mechanism

9

COLBOIS | KASTELEYN MECHANISM |  06.2025

\(E \propto L \)

\(F = E - TS\)

\(S \propto L \)

\(T\)

No defects

Strings

condense

J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13  (1989)

EXCITATIONS:

  • Directed, non-crossing, non-terminating

Energy cost : linear in system size

Entropy gain!

Kasteleyn mechanism

9

COLBOIS | KASTELEYN MECHANISM |  06.2025

10

Directed, non-crossing, non-terminating

Remarks

COLBOIS | KASTELEYN MECHANISM |  06.2025

10

Remarks

\(T\)

"disorder" parameter

\((T-T_K)^{1/2}\)

Directed, non-crossing, non-terminating

AKA the Pokrovsky-Talapov transition

n_{\mathrm{strings}} \propto \sqrt{(T-T_K)}

COLBOIS | KASTELEYN MECHANISM |  06.2025

10

\(T\)

"disorder" parameter

\((T-T_K)^{1/2}\)

Mapping to free fermions Hamiltonian 

\(T \leftrightarrow\) chemical potential

\(n_{\mathrm{strings}} \leftrightarrow\) fermions density

Directed, non-crossing, non-terminating

AKA the Pokrovsky-Talapov transition

Remarks

n_{\mathrm{strings}} \propto \sqrt{(T-T_K)}

questions for frustrated magnets

COLBOIS | KASTELEYN MECHANISM |  06.2025

11

questions for frustrated magnets

COLBOIS | KASTELEYN MECHANISM |  06.2025

11

What constraints emerge ?

Can there be macroscopic degeneracy / classical spin liquids beyond fine-tuning ?

Can there be new examples of transitions ?  

questions for frustrated magnets

COLBOIS | KASTELEYN MECHANISM |  06.2025

11

What constraints emerge ?

Can there be macroscopic degeneracy / classical spin liquids beyond fine-tuning ?

Can there be new examples of transitions ?  

1. Residual entropy

 

questions for frustrated magnets

COLBOIS | KASTELEYN MECHANISM |  06.2025

11

What constraints emerge ?

Can there be macroscopic degeneracy / classical spin liquids beyond fine-tuning ?

Can there be new examples of transitions ?  

1. Residual entropy

 

2. Correlations / structure factors

 

questions for frustrated magnets

COLBOIS | KASTELEYN MECHANISM |  06.2025

11

What constraints emerge ?

Can there be macroscopic degeneracy / classical spin liquids beyond fine-tuning ?

Can there be new examples of transitions ?  

1. Residual entropy

 

2. Correlations / structure factors

 

3. Controlled scaling (finite - size / finite - entanglement)

COLBOIS | KASTELEYN MECHANISM |  06.2025

 The challenge

12

COLBOIS | KASTELEYN MECHANISM |  06.2025

 The challenge

Constraints / frustration


12

COLBOIS | KASTELEYN MECHANISM |  06.2025

 The challenge

Constraints / frustration

 

Farther neighbor interactions

 

12

COLBOIS | KASTELEYN MECHANISM |  06.2025

 The challenge

Constraints / frustration

 

Farther neighbor interactions

 

Exponential (extensive) number of ground states

12

COLBOIS | KASTELEYN MECHANISM |  06.2025

 The challenge

Constraints / frustration

 

Farther neighbor interactions

 

Exponential (extensive) number of ground states

1. Analytical (exact) methods

Planar Ising models

Fine-tuned points

The rest...

 

12

COLBOIS | KASTELEYN MECHANISM |  06.2025

 The challenge

Constraints / frustration

 

Farther neighbor interactions

 

Exponential (extensive) number of ground states

2.  Monte Carlo methods

no sign problem (classical)

ergodicity

Planar Ising models

Fine-tuned points

The rest...

 

12

1. Analytical (exact) methods

COLBOIS | KASTELEYN MECHANISM |  06.2025

 The challenge

Constraints / frustration

 

Farther neighbor interactions

 

Exponential (extensive) number of ground states

2.  Monte Carlo methods

3.  TODAY

Tensor networks

no sign problem (classical)

ergodicity

Planar Ising models

Fine-tuned points

The rest...

 

12

1. Analytical (exact) methods

COLBOIS | KASTELEYN MECHANISM |  06.2025

2. Tensor networks

for classical (frustrated) spin systems

COLBOIS | KASTELEYN MECHANISM |  06.2025

2. Tensor networks

for classical (frustrated) spin systems

Why ?

COLBOIS | KASTELEYN MECHANISM |  06.2025

2. Tensor networks

for classical (frustrated) spin systems

Why ?

How ?

COLBOIS | KASTELEYN MECHANISM |  06.2025

2. Tensor networks

for classical (frustrated) spin systems

Why ?

How ?

What is the catch ? 

 

Why ? 

COLBOIS | KASTELEYN MECHANISM |  06.2025

13

  1. Tensor networks extremely  useful in 1D

Why ? 

COLBOIS | KASTELEYN MECHANISM |  06.2025

13

  1. Tensor networks extremely  useful in 1D

2.  2D classical is "like" 1D quantum

Why ? 

COLBOIS | KASTELEYN MECHANISM |  06.2025

13

  1. Tensor networks extremely  useful in 1D

2.  2D classical is "like" 1D quantum

3.  Building block for quantum problems : algorithms are already optimized

Why ? 

COLBOIS | KASTELEYN MECHANISM |  06.2025

13

  1. Tensor networks extremely  useful in 1D

2.  2D classical is "like" 1D quantum

3.  Building block for quantum problems : algorithms are already optimized

Infinite size for translation-invariant problems

How ? Transfer matrices

COLBOIS | KASTELEYN MECHANISM |  06.2025

11

\mathcal{Z}_L = \sum_{\sigma_1,\sigma_2,\dots\sigma_L} \prod_{i}e^{\beta J \sigma_i \sigma_{i+1}}
image/svg+xml

How ? Transfer matrices

COLBOIS | KASTELEYN MECHANISM |  06.2025

11

\mathcal{Z}_L = \sum_{\sigma_1,\sigma_2,\dots\sigma_L} \prod_{i}e^{\beta J \sigma_i \sigma_{i+1}}
T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}
image/svg+xml
\mathcal{Z}_L = \sum_{\sigma_0} (T^L)_{\sigma_0, \sigma_0}

How ? Transfer matrices

COLBOIS | KASTELEYN MECHANISM |  06.2025

11

\mathcal{Z}_L = \sum_{\sigma_1,\sigma_2,\dots\sigma_L} \prod_{i}e^{\beta J \sigma_i \sigma_{i+1}}
T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}
image/svg+xml
\mathcal{Z}_L = \sum_{\sigma_0} (T^L)_{\sigma_0, \sigma_0}
T^L = \left(P^{-1} \Lambda P\right)^L = P^{-1} \Lambda^L P

How ? Transfer matrices

COLBOIS | KASTELEYN MECHANISM |  06.2025

11

\mathcal{Z}_L = \sum_{\sigma_1,\sigma_2,\dots\sigma_L} \prod_{i}e^{\beta J \sigma_i \sigma_{i+1}}
T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}
image/svg+xml
\mathcal{Z}_L = \sum_{\sigma_0} (T^L)_{\sigma_0, \sigma_0}
T^L = \left(P^{-1} \Lambda P\right)^L = P^{-1} \Lambda^L P
\Lambda = \begin{pmatrix} \lambda_{+} & 0 \\ 0 & \lambda_{-} \end{pmatrix} = \lambda_{+} \begin{pmatrix} 1& 0 \\ 0 & \frac{\lambda_{-}}{\lambda_{+}} \end{pmatrix}

How ? Transfer matrices

COLBOIS | KASTELEYN MECHANISM |  06.2025

11

\mathcal{Z}_L = \sum_{\sigma_1,\sigma_2,\dots\sigma_L} \prod_{i}e^{\beta J \sigma_i \sigma_{i+1}}
T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}
image/svg+xml
\mathcal{Z}_L = \sum_{\sigma_0} (T^L)_{\sigma_0, \sigma_0}
T^L = \left(P^{-1} \Lambda P\right)^L = P^{-1} \Lambda^L P

"Exact contraction"

\Lambda = \begin{pmatrix} \lambda_{+} & 0 \\ 0 & \lambda_{-} \end{pmatrix} = \lambda_{+} \begin{pmatrix} 1& 0 \\ 0 & \frac{\lambda_{-}}{\lambda_{+}} \end{pmatrix}
\Lambda^{L} = \lambda_{+}^{L} \begin{pmatrix} 1& 0 \\ 0 & \left(\frac{\lambda_{-}}{\lambda_{+}}\right)^L \end{pmatrix}

How ? Transfer matrices

COLBOIS | KASTELEYN MECHANISM |  06.2025

11

\mathcal{Z}_L = \sum_{\sigma_1,\sigma_2,\dots\sigma_L} \prod_{i}e^{\beta J \sigma_i \sigma_{i+1}}
T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}
image/svg+xml
\mathcal{Z}_L = \sum_{\sigma_0} (T^L)_{\sigma_0, \sigma_0}
T^L = \left(P^{-1} \Lambda P\right)^L = P^{-1} \Lambda^L P

"Exact contraction"

\Lambda = \begin{pmatrix} \lambda_{+} & 0 \\ 0 & \lambda_{-} \end{pmatrix} = \lambda_{+} \begin{pmatrix} 1& 0 \\ 0 & \frac{\lambda_{-}}{\lambda_{+}} \end{pmatrix}
\Lambda^{L} = \lambda_{+}^{L} \begin{pmatrix} 1& 0 \\ 0 & \left(\frac{\lambda_{-}}{\lambda_{+}}\right)^L \end{pmatrix} \xrightarrow[L \to \infty]{} \lambda_{+}^{L} \begin{pmatrix} 1& 0 \\ 0 & 0 \end{pmatrix}

"Approximate  contraction"

How ? Tensor network language

COLBOIS | KASTELEYN MECHANISM |  06.2025

12

"Contraction"

Matrix / tensor

Vector

Open legs =  number of indices = "rank"

How ? Tensor network language

COLBOIS | KASTELEYN MECHANISM |  06.2025

12

"Contraction"

Matrix / tensor

Vector

Open legs =  number of indices = "rank"

How ? Tensor network language

COLBOIS | KASTELEYN MECHANISM |  06.2025

12

"Contraction"

Matrix / tensor

Vector

Open legs =  number of indices = "rank"

How ? Tensor network language

COLBOIS | KASTELEYN MECHANISM |  06.2025

12

"Contraction"

Matrix / tensor

Vector

Open legs =  number of indices = "rank"

How ? MOving to 2D

COLBOIS | KASTELEYN MECHANISM |  06.2025

13

R. J. Baxter, J. Math. Phys. 9, 1968

R. Orús, G. Vidal, PRB 78, 2008

T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996

T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}

How ? MOving to 2D

COLBOIS | KASTELEYN MECHANISM |  06.2025

13

R. J. Baxter, J. Math. Phys. 9, 1968

R. Orús, G. Vidal, PRB 78, 2008

T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996

T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}
\delta_{\sigma_{i,1}, \sigma_{i,2}, \sigma_{i,3}, \sigma_{i,4}} = \begin{cases} 1 & \text{ all equal}\\ 0 & \text{ otherwise} \end{cases}

How ? MOving to 2D

COLBOIS | KASTELEYN MECHANISM |  06.2025

13

R. J. Baxter, J. Math. Phys. 9, 1968

R. Orús, G. Vidal, PRB 78, 2008

T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996

T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}
\delta_{\sigma_{i,1}, \sigma_{i,2}, \sigma_{i,3}, \sigma_{i,4}} = \begin{cases} 1 & \text{ all equal}\\ 0 & \text{ otherwise} \end{cases}

How ? Evaluating the partition function

COLBOIS | KASTELEYN MECHANISM |  06.2025

14

\mathcal{Z}_N =

How ? Evaluating the partition function

COLBOIS | KASTELEYN MECHANISM |  06.2025

\mathcal{Z}_N =
2^L

14

How ? Evaluating the partition function

COLBOIS | KASTELEYN MECHANISM |  06.2025

\mathcal{Z}_N =
2^L

14

Goldenfeld & Kadanoff, Science, 284 (1999)

How ? Evaluating the partition function

COLBOIS | KASTELEYN MECHANISM |  06.2025

\mathcal{Z}_N =
2^L

14

Goldenfeld & Kadanoff, Science, 284 (1999)

Can we keep only the "main" information ? 

How ? Evaluating the partition function

COLBOIS | KASTELEYN MECHANISM |  06.2025

\mathcal{Z}_N =

R. J. Baxter, J. Math. Phys. 9, 1968

T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996

Fishman et al. PRB 98, 2018

2^L

14

How ? Evaluating the partition function

COLBOIS | KASTELEYN MECHANISM |  06.2025

\mathcal{Z}_N =

R. J. Baxter, J. Math. Phys. 9, 1968

T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996

Fishman et al. PRB 98, 2018

\chi
2^L

14

How ? Evaluating the partition function

COLBOIS | KASTELEYN MECHANISM |  06.2025

\mathcal{Z}_N =

R. J. Baxter, J. Math. Phys. 9, 1968

T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996

Fishman et al. PRB 98, 2018

R. J. Baxter, J. Math. Phys. 9, 1968

Orús, Vidal, PRB 78, 2008;

V. Zauner-Stauber et. al. PRB 97,2018;

M. Fishman et. al PRB 98, 2018 

\chi
\chi

14

2^L

In both cases: 

COLBOIS | KASTELEYN MECHANISM |  06.2025

15

EXPONENTIAL # of PARAMETERS

2^L

CONSTANT # of

PARAMETERS (poly. in \(\chi\))

(\chi \times 2 \times \chi)

 \(\chi\) is the control parameter

In both cases: 

COLBOIS | KASTELEYN MECHANISM |  06.2025

15

EXPONENTIAL # of PARAMETERS

2^L

CONSTANT # of

PARAMETERS (poly. in \(\chi\))

(\chi \times 2 \times \chi)

 \(\chi\) is the control parameter

R. J. Baxter, J. Math. Phys. 9, 1968

Orús, Vidal, PRB 78, 2008;

T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996

V. Zauner-Stauber et. al. PRB 97,2018;

M. Fishman et. al PRB 98, 2018 

\(\langle m \rangle\) = 

In both cases: 

COLBOIS | KASTELEYN MECHANISM |  06.2025

15

EXPONENTIAL # of PARAMETERS

2^L

CONSTANT # of

PARAMETERS (poly. in \(\chi\))

(\chi \times 2 \times \chi)

 \(\chi\) is the control parameter

R. J. Baxter, J. Math. Phys. 9, 1968

Orús, Vidal, PRB 78, 2008;

T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996

V. Zauner-Stauber et. al. PRB 97,2018;

M. Fishman et. al PRB 98, 2018 

\(\langle m \rangle\) = 

Ueda, et al. JSPS 74, 111-124 (2005)

T. Viejira, et al, PRB 104, 235141 (2021)

Frustrated magnets ?

COLBOIS | KASTELEYN MECHANISM |  06.2025

16

Vanderstraeten et al (2018)

Colbois et al, (2021)

Frustrated magnets ?

COLBOIS | KASTELEYN MECHANISM |  06.2025

16

T_{\sigma_1, \sigma_2, \sigma_3} =

Vanderstraeten et al (2018)

Colbois et al, (2021)

Boltzmann

Weight

Kagome

Exact residual entropy with bond dimension 10

Correlation length to \(10^{-4}\)

 

 

 

Frustrated magnets ?

COLBOIS | KASTELEYN MECHANISM |  06.2025

16

T_{\sigma_1, \sigma_2, \sigma_3} =

Vanderstraeten et al (2018)

Colbois et al, (2021)

Boltzmann

Weight

Kagome

Exact residual entropy with bond dimension 10

Correlation length to \(10^{-4}\)

 

 

 

3D Ice residual entropy and correlations...

Where is the catch ?

COLBOIS | KASTELEYN MECHANISM |  06.2025

17

Vanhecke, JC et al (2021)

Where is the catch ?

COLBOIS | KASTELEYN MECHANISM |  06.2025

17

Vanhecke, JC et al (2021)

Fails in the presence of

frustration and macroscopic g.s. degeneracy

Where is the catch ?

COLBOIS | KASTELEYN MECHANISM |  06.2025

17

Vanhecke, JC et al (2021)

Fails in the presence of

frustration and macroscopic g.s. degeneracy

B. Vanhecke, JC, et al. PRR 3, (2021)

\(\rightarrow\) in spin glasses

 

 

\(\rightarrow \) in translation-invariant frustrated Ising models

\(\rightarrow\) in lattice gas models

\(\rightarrow\) in frustrated XY models 

S. A. Akimenko, PRE 107, (2023)

F.F. Song, T.-Y. Lin, G. M. Zhang, PRB (2023)

C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)

Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)

J. G. Liu, L. Wang, P. Zhang, PRL 126, (2021)

Where is the catch ?

COLBOIS | KASTELEYN MECHANISM |  06.2025

18

Vanhecke, JC et al (2021)

Implement the constraint locally.

Where is the catch ?

COLBOIS | KASTELEYN MECHANISM |  06.2025

Vanhecke, JC et al (2021)

18

Implement the constraint locally.

Good news: you can (HOPE TO) find the Constraint!

COLBOIS | KASTELEYN MECHANISM |  06.2025

19

Essential idea : Anderson bounds

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969)

M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975)

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981)

W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016)

 B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

Good news: you can (HOPE TO) find the Constraint!

COLBOIS | KASTELEYN MECHANISM |  06.2025

19

Essential idea : Anderson bounds

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969)

M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975)

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981)

W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016)

 B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

H = \sum_{\langle i,j \rangle } \sigma_i \sigma_j = \frac{J}{2} \sum_{\triangle i,j,k \triangledown i,j,k } (\sigma_i \sigma_j + \sigma_j \sigma_k + \sigma_k \sigma_i)

Good news: you can (HOPE TO) find the Constraint!

COLBOIS | KASTELEYN MECHANISM |  06.2025

19

Essential idea : Anderson bounds

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969)

M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975)

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981)

W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016)

 B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

H = \sum_{\langle i,j \rangle } \sigma_i \sigma_j = \frac{J}{2} \sum_{\triangle i,j,k \triangledown i,j,k } (\sigma_i \sigma_j + \sigma_j \sigma_k + \sigma_k \sigma_i)

Ground states = tiling of configurations that minimize the local Hamiltonian

Good news: you can (HOPE TO) find the Constraint!

COLBOIS | KASTELEYN MECHANISM |  06.2025

19

Essential idea : Anderson bounds

LINEAR PROGRAM:

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969)

M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975)

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981)

W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016)

 B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

H = \sum_{\langle i,j \rangle } \sigma_i \sigma_j = \frac{J}{2} \sum_{\triangle i,j,k \triangledown i,j,k } (\sigma_i \sigma_j + \sigma_j \sigma_k + \sigma_k \sigma_i)

Ground states = tiling of configurations that minimize the local Hamiltonian

1. Split the Hamiltonian into clusters that overlap

2. Find the optimal energy lower-bound

1. Split the Hamiltonian into clusters that overlap

Good news: you can (HOPE TO) find the Constraint!

COLBOIS | KASTELEYN MECHANISM |  06.2025

19

Essential idea : Anderson bounds

LINEAR PROGRAM:

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969)

M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975)

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981)

W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016)

 B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

H = \sum_{\langle i,j \rangle } \sigma_i \sigma_j = \frac{J}{2} \sum_{\triangle i,j,k \triangledown i,j,k } (\sigma_i \sigma_j + \sigma_j \sigma_k + \sigma_k \sigma_i)

Ground states = tiling of configurations that minimize the local Hamiltonian

1. Split the Hamiltonian into clusters that overlap

2. Find the optimal energy lower-bound

3. Contract + extend to finite temperature

Good news: you can (HOPE TO) find the Constraint!

COLBOIS | KASTELEYN MECHANISM |  06.2025

19

Essential idea : Anderson bounds

LINEAR PROGRAM:

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969)

M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975)

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981)

W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016)

 B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

H = \sum_{\langle i,j \rangle } \sigma_i \sigma_j = \frac{J}{2} \sum_{\triangle i,j,k \triangledown i,j,k } (\sigma_i \sigma_j + \sigma_j \sigma_k + \sigma_k \sigma_i)

Ground states = tiling of configurations that minimize the local Hamiltonian

1. Split the Hamiltonian into clusters that overlap

2. Find the optimal energy lower-bound

3. Contract + extend to finite temperature

Questions so far ? 

3. A kasteleyn-driven staircase

COLBOIS | KASTELEYN MECHANISM |  06.2025

COLBOIS | KASTELEYN MECHANISM |  06.2025

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)

L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)

Z. Luo et al. Science 363, (2019)

JC et al., PRB 104 (2021)

20

Frustrated models on the kagome lattice

COLBOIS | KASTELEYN MECHANISM |  06.2025

image/svg+xml
image/svg+xml
H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3||}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3\star}} \sigma_i \sigma_j
+
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j
H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3||}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3\star}} \sigma_i \sigma_j
+
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)

L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)

Z. Luo et al. Science 363, (2019)

JC et al., PRB 104 (2021)

Frustrated models on the kagome lattice

20

Frustrated models on the kagome lattice

COLBOIS | KASTELEYN MECHANISM |  06.2025

image/svg+xml
image/svg+xml
H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3||}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3\star}} \sigma_i \sigma_j
+
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j
H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3||}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3\star}} \sigma_i \sigma_j
+
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)

L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)

Z. Luo et al. Science 363, (2019)

JC et al., PRB 104 (2021)

Kagome lattice

20

Frustrated models on the kagome lattice

COLBOIS | KASTELEYN MECHANISM |  06.2025

image/svg+xml
image/svg+xml
H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3||}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3\star}} \sigma_i \sigma_j
+
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j
H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3||}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3\star}} \sigma_i \sigma_j
+
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)

L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)

Z. Luo et al. Science 363, (2019)

JC et al., PRB 104 (2021)

Kagome lattice

3 Kagome sublattices

20

Frustrated models on the kagome lattice

COLBOIS | KASTELEYN MECHANISM |  06.2025

image/svg+xml
image/svg+xml
H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3||}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3\star}} \sigma_i \sigma_j
+
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j
H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3||}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3\star}} \sigma_i \sigma_j
+
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)

L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)

Z. Luo et al. Science 363, (2019)

JC et al., PRB 104 (2021)

Kagome lattice

3 Kagome sublattices

3 triangular sublattices

20

Frustrated models on the kagome lattice

COLBOIS | KASTELEYN MECHANISM |  06.2025

image/svg+xml
image/svg+xml
H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3||}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3\star}} \sigma_i \sigma_j
+
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j
H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3||}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3\star}} \sigma_i \sigma_j
+
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)

L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)

Z. Luo et al. Science 363, (2019)

JC et al., PRB 104 (2021)

Kagome lattice

3 Kagome sublattices

3 triangular sublattices

 

Highly frustrated

 

20

Macroscopically degenerate ground state phases

COLBOIS | KASTELEYN MECHANISM |  06.2025

21

JC, B. Vanhecke et. al., PRB 106 (2022)

J_1 \gg J_2, J_3

Macroscopically degenerate ground state phases

COLBOIS | KASTELEYN MECHANISM |  06.2025

JC, B. Vanhecke et. al., PRB 106 (2022)

J_1 \gg J_2, J_3

All antiferromagnetic couplings : 

3 phases due to the competition (exact g.s. energy)

19

21

Macroscopically degenerate ground state phases

COLBOIS | KASTELEYN MECHANISM |  06.2025

S = 0.026922 \pm 3 \cdot 10^{-6} = \frac{S_\triangle}{12}
S = 0.107689 \pm 2 \cdot 10^{-6} \cong \frac{S_\triangle}{3}
S = 0.01920 \pm 3 \cdot 10^{-5}

JC, B. Vanhecke et. al., PRB 106 (2022)

J_1 \gg J_2, J_3

All antiferromagnetic couplings : 

3 phases due to the competition (exact g.s. energy)

21

Macroscopically degenerate ground state phases

COLBOIS | KASTELEYN MECHANISM |  06.2025

S = 0.026922 \pm 3 \cdot 10^{-6} = \frac{S_\triangle}{12}
S = 0.01920 \pm 3 \cdot 10^{-5}

JC, B. Vanhecke et. al., PRB 106 (2022)

J_1 \gg J_2, J_3

All antiferromagnetic couplings : 

3 phases due to the competition (exact g.s. energy)

S = 0.107689 \pm 2 \cdot 10^{-6} \cong \frac{S_\triangle}{3}

200 tiles

21

"String phase" ground state

COLBOIS | KASTELEYN MECHANISM |  06.2025

JC, B. Vanhecke et. al., PRB 106 (2022)

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

22

\(\mathbb{Z}_2 \times \mathbb{Z}_3\) symmetry breaking

\Psi_{\mathbb{Z}_2} = \lim_{x \rightarrow \infty} | \sigma_0 \sigma_{x} |

Dense rows: AF order

"String phase" ground state

COLBOIS | KASTELEYN MECHANISM |  06.2025

JC, B. Vanhecke et. al., PRB 106 (2022)

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

\(\mathbb{Z}_2 \times \mathbb{Z}_3\) symmetry breaking

\Psi_{\mathbb{Z}_2} = \lim_{x \rightarrow \infty} | \sigma_0 \sigma_{x} |

Dense rows: AF order

Sparse rows: frustrated Ising model on the triangular lattice

EXPONENTIAL NUMBER

22

"String phase" ground state

COLBOIS | KASTELEYN MECHANISM |  06.2025

JC, B. Vanhecke et. al., PRB 106 (2022)

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

\(\mathbb{Z}_2 \times \mathbb{Z}_3\) symmetry breaking

\Psi_{\mathbb{Z}_2} = \lim_{x \rightarrow \infty} | \sigma_0 \sigma_{x} |

Dense rows: AF order

Sparse rows: frustrated Ising model on the triangular lattice

EXPONENTIAL NUMBER

"Strings" representation

22

Zero-energy double domain walls (=DDW)

COLBOIS | KASTELEYN MECHANISM |  06.2025

23

JC, B. Vanhecke et. al., PRB 106 (2022)

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

\(\mathbb{Z}_2 \times \mathbb{Z}_3\) symmetry breaking

Zero-energy double domain walls (=DDW)

COLBOIS | KASTELEYN MECHANISM |  06.2025

JC, B. Vanhecke et. al., PRB 106 (2022)

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

\(\mathbb{Z}_2 \times \mathbb{Z}_3\) symmetry breaking

DDW Break the dense rows AF order

(Introduce vertical dimers)

23

Zero-energy double domain walls (=DDW)

COLBOIS | KASTELEYN MECHANISM |  06.2025

JC, B. Vanhecke et. al., PRB 106 (2022)

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

\(\mathbb{Z}_2 \times \mathbb{Z}_3\) symmetry breaking

DDW Break the dense rows AF order

(Introduce vertical dimers)

Entropic suppression

("partial order by disorder")

23

Zero-energy double domain walls (=DDW)

COLBOIS | KASTELEYN MECHANISM |  06.2025

JC, B. Vanhecke et. al., PRB 106 (2022)

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

\(\mathbb{Z}_2 \times \mathbb{Z}_3\) symmetry breaking

DDW Break the dense rows AF order

(Introduce vertical dimers)

Entropic suppression

("partial order by disorder")

What about finite-temperature?

(Our expectations: two second order phase transitions,

a single first-order or a Kasteleyn transition)

23

double domain wall Excitations

COLBOIS | KASTELEYN MECHANISM |  06.2025

JC, B. Vanhecke et. al., PRB 106 (2022)

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

\(\mathbb{Z}_2 \times \mathbb{Z}_3\) symmetry breaking

24

double domain wall Excitations

COLBOIS | KASTELEYN MECHANISM |  06.2025

JC, B. Vanhecke et. al., PRB 106 (2022)

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

\(\mathbb{Z}_2 \times \mathbb{Z}_3\) symmetry breaking

Freedom inside the domain wall

Energy cost

Entropic gain

24

double domain wall Excitations

COLBOIS | KASTELEYN MECHANISM |  06.2025

JC, B. Vanhecke et. al., PRB 106 (2022)

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

\(\mathbb{Z}_2 \times \mathbb{Z}_3\) symmetry breaking

Freedom inside the domain wall

Energy cost

Entropic gain

Replacing a green string by a DDW

Entropic cost

24

double domain wall Excitations

COLBOIS | KASTELEYN MECHANISM |  06.2025

JC, B. Vanhecke et. al., PRB 106 (2022)

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

\(\mathbb{Z}_2 \times \mathbb{Z}_3\) symmetry breaking

Freedom inside the domain wall

Energy cost

Entropic gain

Replacing a green string by a DDW

Entropic cost

Repulsion between domain walls

Energy cost for condensation

24

Kasteleyn mechanism for Plateaus of topological origin

COLBOIS | KASTELEYN MECHANISM |  06.2025

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

Freedom inside the domain wall

Energy cost

Entropic gain

Replacing a green string by a DDW

Entropic cost

Repulsion between domain walls

Energy cost for condensation

25

\(T\)

Kasteleyn mechanism for Plateaus of topological origin

COLBOIS | KASTELEYN MECHANISM |  06.2025

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

Freedom inside the domain wall

Energy cost

Entropic gain

Replacing a green string by a DDW

Entropic cost

Repulsion between domain walls

Energy cost for condensation

\(T\)

25

Kasteleyn mechanism for Plateaus of topological origin

COLBOIS | KASTELEYN MECHANISM |  06.2025

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

Freedom inside the domain wall

Energy cost

Entropic gain

Replacing a green string by a DDW

Entropic cost

Repulsion between domain walls

Energy cost for condensation

\(T\)

25

Kasteleyn mechanism for Plateaus of topological origin

COLBOIS | KASTELEYN MECHANISM |  06.2025

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

Freedom inside the domain wall

Energy cost

Entropic gain

Replacing a green string by a DDW

Entropic cost

Repulsion between domain walls

Energy cost for condensation

\(T\)

\(T_c^{(1)}\)

 \(n_c/n_A = 1\)

 \(n_c =0\)

25

Kasteleyn mechanism for Plateaus of topological origin

COLBOIS | KASTELEYN MECHANISM |  06.2025

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

Freedom inside the domain wall

Energy cost

Entropic gain

Replacing a green string by a DDW

Entropic cost

Repulsion between domain walls

Energy cost for condensation

\(T\)

\(T_c^{(1)}\)

\(T_c^{(2)}\)

 \(n_c/n_A = 1\)

 \(n_c =0\)

 \(n_c/n_A = 2\)

25

Kasteleyn mechanism for Plateaus of topological origin

COLBOIS | KASTELEYN MECHANISM |  06.2025

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

Freedom inside the domain wall

Energy cost

Entropic gain

Replacing a green string by a DDW

Entropic cost

Repulsion between domain walls

Energy cost for condensation

\(T\)

\(T_c^{(1)}\)

 \(n_c/n_A = 1\)

 \(n_c =0\)

\(T_c^{(2)}\)

 \(n_c/n_A = 2\)

\(T_c^{(3)}\)

 \(n_c/n_A = 3\)

25

Staircase in the density of strings

COLBOIS | KASTELEYN MECHANISM |  06.2025

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

26

Staircase in the density of strings

COLBOIS | KASTELEYN MECHANISM |  06.2025

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

Series of 1st order transitions

Ratio of string densities takes all integer values 

26

Staircase in the density of strings

COLBOIS | KASTELEYN MECHANISM |  06.2025

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

Ratio of string densities takes all integer values 

Series of 1st order transitions

Not a  "usual" Devil's staircase:

26

Density of strings is not exactly constant

(not commensurate)

Staircase in the density of strings

COLBOIS | KASTELEYN MECHANISM |  06.2025

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

Density of strings is not exactly constant

(not commensurate)

Series of 1st order transitions

Not a  "usual" Devil's staircase:

Infinite number of locked portions

Ratio of string densities takes all integer values 

26

COLBOIS | KASTELEYN MECHANISM |  06.2025

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

27

Upcoming

A. Rufino, S. Nyckees, JC, F. Mila, in preparation

COLBOIS | KASTELEYN MECHANISM |  06.2025

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

27

Upcoming

Finite-\(J\) consequences ? 

A. Rufino, S. Nyckees, JC, F. Mila, in preparation

COLBOIS | KASTELEYN MECHANISM |  06.2025

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

27

Upcoming

Finite-\(J\) consequences ? 

Other models ? 

Yes!

1D quantum / 2D Strings model

A. Rufino, S. Nyckees, JC, F. Mila, in preparation

COLBOIS | KASTELEYN MECHANISM |  06.2025

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

28

Outlook

A. Rufino, S. Nyckees, JC, F. Mila, in preparation

Tensor network frustration problem

Starting point 

Is there always a cell relaxing the frustration? (Hard vs weak frustration)

Can the problem be fixed at the level of the MPO?

Consequences for iPEPS?

 

Experimentally realizable ? 

Ground for quantum models ? 

COLBOIS | KASTELEYN MECHANISM |  06.2025

29

Take-home messages

  • Directed, non-crossing, non-terminating
  • energy cost versus entropic gain

Kasteleyn mechanism

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

COLBOIS | KASTELEYN MECHANISM |  06.2025

29

Take-home messages

  • Directed, non-crossing, non-terminating
  • energy cost versus entropic gain

Kasteleyn mechanism

Topological "devil's step" 

1. Two kinds of system-spanning strings
2. Internal freedom within strings.
3. Effective repulsion between strings of the same kind

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

COLBOIS | KASTELEYN MECHANISM |  06.2025

29

Take-home messages

  • Directed, non-crossing, non-terminating
  • energy cost versus entropic gain

Kasteleyn mechanism

Topological "devil's step" 

1. Two kinds of system-spanning strings
2. Internal freedom within strings.
3. Effective repulsion between strings of the same kind

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

COLBOIS | KASTELEYN MECHANISM |  06.2025

29

Take-home messages

  • Directed, non-crossing, non-terminating
  • energy cost versus entropic gain

Kasteleyn mechanism

Topological "devil's step" 

1. Two kinds of system-spanning strings
2. Internal freedom within strings.
3. Effective repulsion between strings of the same kind

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

Thank you!

COLBOIS | KASTELEYN MECHANISM |  06.2025

20

Take-home messages

  • Directed, non-crossing, non-terminating
  • energy cost versus entropic gain

Kasteleyn mechanism

Topological "devil's step" 

1. Two kinds of system-spanning strings
2. Internal freedom within strings.
3. Effective repulsion between strings of the same kind

Thank you!

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

2D kasteleyn transition in Spin ice

COLBOIS | KASTELEYN MECHANISM |  06.2025

2D kasteleyn transition in Spin ice

COLBOIS | KASTELEYN MECHANISM |  06.2025

COLBOIS | KASTELEYN MECHANISM |  06.2025

ANNNI model devil's staircase

Ferro \(J_1\)

AF \(J_2\) in one direction

In 3D : 

Macroscopic degeneracy of arrangements for successive ferromagnetic layers

CeSb

von Boehm & Bak, PRB (1980)

Staircases

COLBOIS | KASTELEYN MECHANISM |  06.2025

\kappa = -J_2/J_1

von Boehm & Bak, PRB (1980)

Fisher and Selke, PRL (1980)

COLBOIS | KASTELEYN MECHANISM |  06.2025

An example : the dimer model 

J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13  (1989)

Adsorption of diatomic molecules (dimers) on crystal surfaces

\varepsilon_2

1

2

3

\varepsilon_3
\varepsilon_1
<
=

COLBOIS | KASTELEYN MECHANISM |  06.2025

An example : the dimer model 

J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13  (1989)

Adsorption of diatomic molecules (dimers) on crystal surfaces

Hardcore (close-packed) dimers

\varepsilon_2

1

2

3

\varepsilon_3
\varepsilon_1
<
=

COLBOIS | KASTELEYN MECHANISM |  06.2025

An example : the dimer model 

J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13  (1989)

Adsorption of diatomic molecules (dimers) on crystal surfaces

Hardcore (close-packed) dimers

\(\varepsilon_b\) : cost of putting a dimer on \(b = 1,2,3\)

z_b = e^{-\frac{\varepsilon_b}{k_B T}}
\mathcal{Z}(\mathbf{z}) = \sum_{\mathrm{coverings}} \prod_b z_b^{N_b}
\varepsilon_2
\varepsilon_1 = 0

1

2

3

\varepsilon_3
\varepsilon_1
<
=

COLBOIS | KASTELEYN MECHANISM |  06.2025

Ground state v.s. Excitations

J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13  (1989)

\varepsilon_2
\varepsilon_3
\varepsilon_1
<
=

Constraint : hardcore

COLBOIS | KASTELEYN MECHANISM |  06.2025

Ground state v.s. Excitations

J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13  (1989)

\varepsilon_2
\varepsilon_3
\varepsilon_1
<
=

Constraint : hardcore

COLBOIS | KASTELEYN MECHANISM |  06.2025

Ground state v.s. Excitations

J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13  (1989)

\varepsilon_2
\varepsilon_3
\varepsilon_1
<
=

Constraint : hardcore

COLBOIS | KASTELEYN MECHANISM |  06.2025

Ground state v.s. Excitations

J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13  (1989)

\varepsilon_2
\varepsilon_3
\varepsilon_1
<
=

Constraint : hardcore

COLBOIS | KASTELEYN MECHANISM |  06.2025

Ground state v.s. Excitations

J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13  (1989)

\varepsilon_2
\varepsilon_3
\varepsilon_1
<
=

Constraint : hardcore

COLBOIS | KASTELEYN MECHANISM |  06.2025

Ground state v.s. Excitations

J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13  (1989)

\varepsilon_2
\varepsilon_3
\varepsilon_1
<
=

Constraint : hardcore

COLBOIS | KASTELEYN MECHANISM |  06.2025

Ground state v.s. Excitations

J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13  (1989)

\varepsilon_2
\varepsilon_3
\varepsilon_1
<
=

Constraint : hardcore

  • Directed, non-crossing, non-terminating

COLBOIS | KASTELEYN MECHANISM |  06.2025

Ground state v.s. Excitations

J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13  (1989)

\varepsilon_2
\varepsilon_3
\varepsilon_1
<
=

Constraint : hardcore

  • Directed, non-crossing, non-terminating
  • Linear energy cost

COLBOIS | KASTELEYN MECHANISM |  06.2025

Ground state v.s. Excitations

J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13  (1989)

\varepsilon_2
\varepsilon_3
\varepsilon_1
<
=

Constraint : hardcore

  • Directed, non-crossing, non-terminating
  • Linear energy cost
  • Entropic gain

COLBOIS | KASTELEYN MECHANISM |  06.2025

Ground state v.s. Excitations

J. F. Nagle et al, Domb & Lebowitz Phase transitions and critical phenomena 13  (1989)

\varepsilon_2
\varepsilon_3
\varepsilon_1
<
=

Constraint : hardcore

  • Directed, non-crossing, non-terminating
  • Linear energy cost
  • Entropic gain

10

COLBOIS | KASTELEYN MECHANISM |  06.2025

Contracting the TN of a frustrated model

Numerical problem

Ground-state rule

Cancellation of small and large factors

C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)

Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)

 

\(\rightarrow\) precision?

 

J. G. Liu, L. Wang, P. Zhan, PRL 126, (2021)

\(\rightarrow\) log?

(For TN experts)

MPO

The MPO is badly conditioned (e.g. not hermitian, ...). Fix it?

\tilde{t} = e^{\beta \frac{E_{\text{G.S.}}}{N_{\text{bonds}}}} t = \begin{pmatrix} e^{-\frac{4}{3}\beta J} & e^{\frac{2}{3}\beta J}\\ e^{\frac{2}{3}\beta J} & e^{-\frac{4}{3}\beta J}\end{pmatrix}

Failure to minimize simultaneously all local Hamiltonians.

B. Vanhecke, JC, et al. PRR 3, (2021)

F.F. Song, T.-Y. Lin, G. M. Zhang, arXiv:2309.05321

Entropy

COLBOIS | KASTELEYN MECHANISM |  06.2025

\lim_{\beta \rightarrow \infty} {\color{orange}\tilde{\mathcal{Z}}_N} = {\color{orange}W_N}
S = \lim_{N \rightarrow \infty} \frac{1}{N} \ln\left(W_N\right)
\cong {\color{orange}\lambda_+}^N
\mathcal{Z}_N = \sum_{\{\sigma\}} e^{-\beta \mathcal{H}(\{\sigma\})} = e^{-\beta E_{\rm{GS}}} {\color{orange}\sum_{\{\sigma\}} e^{-\beta \left(\mathcal{H}(\{\sigma\})- E_{\rm{GS}}\right)}}\\ = e^{-\beta E_{\rm{GS}}} {\color{orange}\tilde{\mathcal{Z}}_N}

COLBOIS | KASTELEYN MECHANISM |  06.2025

\lim_{\beta \rightarrow \infty} {\color{orange}\tilde{\mathcal{Z}}_N} = {\color{orange}W_N}
S = \lim_{N \rightarrow \infty} \frac{1}{N} \ln\left(W_N\right)
\cong {\color{orange}\lambda_+}^N
\mathcal{Z}_N = \sum_{\{\sigma\}} e^{-\beta \mathcal{H}(\{\sigma\})} = e^{-\beta E_{\rm{GS}}} {\color{orange}\sum_{\{\sigma\}} e^{-\beta \left(\mathcal{H}(\{\sigma\})- E_{\rm{GS}}\right)}}\\ = e^{-\beta E_{\rm{GS}}} {\color{orange}\tilde{\mathcal{Z}}_N}

Partition function for one site:

 

Most precise result

Direct access to zero temperature

Entropy

Topological staircase in a constrained kagome Ising antiferromagnet

By Jeanne Colbois

Topological staircase in a constrained kagome Ising antiferromagnet

Seminar at CPHT - Host : Karyn Le Hur

  • 89