Tensor networks for physics from counting:

Ising models, Ice, and tiling Dominoes

Jeanne Colbois | TMC

Tensor networks for physics from counting:

Ising models, Ice, and tiling Dominoes

Jeanne Colbois | TMC

Tensor networks

Tensor networks for physics from counting:

Ising models, Ice, and tiling Dominoes

Jeanne Colbois | TMC

Ising model(s)

Tensor networks

Frustrated magnetism

Tensor networks for physics from counting:

Ising models, Ice, and tiling Dominoes

Jeanne Colbois | TMC

Ising model(s)

Tensor networks

Frustrated magnetism

Tensor networks for physics from counting:

Ising models, Ice, and tiling Dominoes

Jeanne Colbois | TMC

Ising model(s)

Tensor networks

Frustrated magnetism

Tensor networks for physics from counting:

Ising models, Ice, and tiling Dominoes

Jeanne Colbois | TMC

Ising model(s)

Tensor networks

Frustrated magnetism

1

Understanding collective behavior...

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

1

Understanding collective behavior...

... from interactions at the microscopic scale

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

1

Understanding collective behavior...

... from interactions at the microscopic scale

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

1

Understanding collective behavior...

... from interactions at the microscopic scale

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

1

Understanding collective behavior...

... from interactions at the microscopic scale

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Toy models,

effective hamiltonians

1

Understanding collective behavior...

... from interactions at the microscopic scale

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

\mathcal{Z}= \sum_{\mathrm{conf.}} e^{-\frac{1}{k_BT} H(\mathrm{conf})}

Toy models,

effective hamiltonians

partition function

Disorder & competition in magnetic systems

2

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Disorder & competition in magnetic systems

2

Lausanne

Frustration

in artificial spin systems

PhD : Emergent disorder

2017-2022

Frédéric Mila

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Disorder & competition in magnetic systems

2

Lausanne

Frustration

in artificial spin systems

PhD : Emergent disorder

Tensor networks + Monte Carlo

Tensor networks to demonstrate magnetic disorder at zero temperature

2017-2022

Frédéric Mila

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Disorder & competition in magnetic systems

2

Lausanne

Frustration

in artificial spin systems

PhD : Emergent disorder

Postdocs : quenched disorder in spin chains

Tensor networks + Monte Carlo

Tensor networks to demonstrate magnetic disorder at zero temperature

2022-2024

2017-2022

Frédéric Mila

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Disorder & competition in magnetic systems

2

Toulouse

Lausanne

Anderson &

Many-body localization

Frustration

in artificial spin systems

PhD : Emergent disorder

Postdocs : quenched disorder in spin chains

Tensor networks + Monte Carlo

"Shift-invert" exact diagonalization

Tensor networks to demonstrate magnetic disorder at zero temperature

2022-2024

2017-2022

Frédéric Mila

Nicolas Laflorencie

Fabien Alet

Instability of Anderson

localization to weak interactions

vs Many-body localization

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Disorder & competition in magnetic systems

2

Toulouse

Lausanne

Anderson &

Many-body localization

Frustration

in artificial spin systems

PhD : Emergent disorder

Postdocs : quenched disorder in spin chains

Tensor networks + Monte Carlo

"Shift-invert" exact diagonalization

Localization,

Glassy physics

Singapore

DMRG

Tensor networks to demonstrate magnetic disorder at zero temperature

Localization transitions from extreme statistics

2022-2024

2017-2022

Frédéric Mila

Nicolas Laflorencie

Fabien Alet

Gabriel Lemarié

Shaffique Adam

Instability of Anderson

localization to weak interactions

vs Many-body localization

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

At Institut Néel

3

Tensor network investigation of fragmented magnetism 

Each spin participates to both phases!

Magnetic order

Spin

liquid

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

At Institut Néel

3

Tensor network investigation of fragmented magnetism 

Each spin participates to both phases!

Magnetic order

Spin

liquid

Benjamin Canals

Matthieu Deschamps

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

At Institut Néel

3

Tensor network investigation of fragmented magnetism 

Each spin participates to both phases!

Magnetic order

Spin

liquid

Benjamin Canals

Matthieu Deschamps

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Arnaud Ralko

Remy Dangoisse

... and  more frustrated systems !

Laurent Del Rey

Philippe David

Valérie Guisset

Johann Coraux

Nicolas Rougemaille

SCOPE

1. Why study Ising models?

2. Tensor networks and the many-body problem

3. Tensor networks should work for Ising models

4. Frustrated models as domino games

5. Some applications & perspectives

4

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

The ising model

The ising model

Why it matters

Why we want to solve it

Why it is hard

5

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

\(\sigma_i\) is the orientation of a spin

H = - J \sum_{\langle i,j \rangle}\sigma_i \sigma_j \quad \sigma_i = \pm 1

Lenz (1920), Ising (1925)

A simple model of magnetism...

5

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

\(\sigma_i\) is the orientation of a spin

H = - J \sum_{\langle i,j \rangle}\sigma_i \sigma_j \quad \sigma_i = \pm 1

Lenz (1920), Ising (1925)

A simple model of magnetism...

\mathcal{Z}= \sum_{\mathrm{conf.}} e^{-\frac{1}{k_BT} H(\mathrm{conf})}

5

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

\(\sigma_i\) is the orientation of a spin

H = - J \sum_{\langle i,j \rangle}\sigma_i \sigma_j \quad \sigma_i = \pm 1

Lenz (1920), Ising (1925)

A simple model of magnetism...

\(T>T_c\)

\(T= T_c\)

\(T< T_c\)

\mathcal{Z}= \sum_{\mathrm{conf.}} e^{-\frac{1}{k_BT} H(\mathrm{conf})}

5

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

\(\sigma_i\) is the orientation of a spin

H = - J \sum_{\langle i,j \rangle}\sigma_i \sigma_j \quad \sigma_i = \pm 1

Lenz (1920), Ising (1925)

A simple model of magnetism...

Real space

\(T>T_c\)

\(T= T_c\)

\(T< T_c\)

\mathcal{Z}= \sum_{\mathrm{conf.}} e^{-\frac{1}{k_BT} H(\mathrm{conf})}

5

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

\(\sigma_i\) is the orientation of a spin

H = - J \sum_{\langle i,j \rangle}\sigma_i \sigma_j \quad \sigma_i = \pm 1

Lenz (1920), Ising (1925)

A simple model of magnetism...

Paramagnet

~ Gas

Real space

Diffraction

Reciprocal space

\(T>T_c\)

\(T= T_c\)

\(T< T_c\)

\(q_x\)

\(q_y\)

\(\xi = 0\)

\mathcal{Z}= \sum_{\mathrm{conf.}} e^{-\frac{1}{k_BT} H(\mathrm{conf})}

5

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

\(\sigma_i\) is the orientation of a spin

H = - J \sum_{\langle i,j \rangle}\sigma_i \sigma_j \quad \sigma_i = \pm 1

Lenz (1920), Ising (1925)

A simple model of magnetism...

Paramagnet

~ Gas

Real space

Diffraction

Reciprocal space

\(T>T_c\)

\(T= T_c\)

\(T< T_c\)

\(q_x\)

\(q_y\)

\(\xi = 0\)

Scale invariance!

\mathcal{Z}= \sum_{\mathrm{conf.}} e^{-\frac{1}{k_BT} H(\mathrm{conf})}

5

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

\(\sigma_i\) is the orientation of a spin

H = - J \sum_{\langle i,j \rangle}\sigma_i \sigma_j \quad \sigma_i = \pm 1

Lenz (1920), Ising (1925)

A simple model of magnetism...

Paramagnet

~ Gas

Real space

Diffraction

Reciprocal space

\(T>T_c\)

\(T= T_c\)

\(T< T_c\)

\(q_x\)

\(q_y\)

\(\xi = 0\)

Scale invariance!

\mathcal{Z}= \sum_{\mathrm{conf.}} e^{-\frac{1}{k_BT} H(\mathrm{conf})}

5

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

\(\sigma_i\) is the orientation of a spin

H = - J \sum_{\langle i,j \rangle}\sigma_i \sigma_j \quad \sigma_i = \pm 1

Lenz (1920), Ising (1925)

A simple model of magnetism...

Paramagnet

~ Gas

Real space

Diffraction

Reciprocal space

\(T>T_c\)

\(T= T_c\)

\(T< T_c\)

\(q_x\)

\(q_y\)

\(\xi = 0\)

Magnetic order

~ solid

\(q_x\)

\(\xi = \infty\)

\(q_y\)

Scale invariance!

\mathcal{Z}= \sum_{\mathrm{conf.}} e^{-\frac{1}{k_BT} H(\mathrm{conf})}

6

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

H = - J \sum_{\langle i,j \rangle}\sigma_i \sigma_j \quad \sigma_i = \pm 1

... with a claim to universality

6

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Wikimedia comons

H = - J \sum_{\langle i,j \rangle}\sigma_i \sigma_j \quad \sigma_i = \pm 1

Brass!

\(\sigma_i\) : Cu / Zn

... with a claim to universality

Madsen et al PRB 2016

Same behavior at the transition!

(Ordered to disordered sublattice occupation)

6

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Hopfield networks

Voter models

\(\sigma_i\) : opinion

\(\sigma_i\) : off / on neuron 

Wikimedia comons

H = - J \sum_{\langle i,j \rangle}\sigma_i \sigma_j \quad \sigma_i = \pm 1

\(\sigma_i\) : Cu / Zn

... with a claim to universality

Madsen et al PRB 2016

H = - \sum_{(i,j)}J_{i,j}\sigma_i \sigma_j \quad \sigma_i = \pm 1

Same behavior at the transition!

Brass!

(Ordered to disordered sublattice occupation)

(c.f Nobel 2024)

7

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

The example of ice

7

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Solid : only a few configurations in the ground state.

The example of ice

s_0 = \frac{1}{N} k_B \ln(\Omega)

7

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Solid : only a few configurations in the ground state.

The example of ice

s_0 = \frac{1}{N} k_B \ln(\Omega)
\Delta S

Giauque and Ashley, (1933)

Missing entropy ? 

7

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Giauque and Ashley, (1933)

Bernal and Fowler, (1933)

Solid : only a few configurations in the ground state.

Missing entropy ? 

Lattice of oxygens

The example of ice

s_0 = \frac{1}{N} k_B \ln(\Omega)
\Delta S

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Giauque and Ashley, (1933)

Bernal and Fowler, (1933)

Solid : only a few configurations in the ground state.

Missing entropy ? 

7

Lattice of oxygens

Hydrogens form the molecules...

The example of ice

s_0 = \frac{1}{N} k_B \ln(\Omega)
\Delta S

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Giauque and Ashley, (1933)

Bernal and Fowler, (1933)

7

Lattice of oxygens

Hydrogens form the molecules...

Solid : only a few configurations in the ground state.

Missing entropy ? 

The example of ice

s_0 = \frac{1}{N} k_B \ln(\Omega)
\Delta S

The example of ice

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Giauque and Ashley, (1933)

Bernal and Fowler, (1933)

... under constraints:

1 hydrogen / bond

7

Solid : only a few configurations in the ground state.

Missing entropy ? 

Lattice of oxygens

Hydrogens form the molecules...

s_0 = \frac{1}{N} k_B \ln(\Omega)
\Delta S

The example of ice

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Giauque and Ashley, (1933)

Bernal and Fowler, (1933)

... under constraints:

1 hydrogen / bond

7

Solid : only a few configurations in the ground state.

Missing entropy ? 

Lattice of oxygens

Hydrogens form the molecules...

s_0 = \frac{1}{N} k_B \ln(\Omega)
\Delta S

The example of ice

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Giauque and Ashley, (1933)

Bernal and Fowler, (1933)

... under constraints:

1 hydrogen / bond

7

Solid : only a few configurations in the ground state.

Missing entropy ? 

Lattice of oxygens

Hydrogens form the molecules...

Pauling (1935)

s_0 = \frac{1}{N} k_B \ln(\Omega)
\Omega = 2^{N_{\mathrm{bonds}}}\left(\frac{6}{16}\right)^{N_{\mathrm{bonds}}/2}
\Delta S

The example of ice

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Giauque and Ashley, (1933)

Bernal and Fowler, (1933)

... under constraints:

1 hydrogen / bond

7

Solid : only a few configurations in the ground state.

Missing entropy ? 

Lattice of oxygens

Hydrogens form the molecules...

All hydrogen configurations

Pauling (1935)

s_0 = \frac{1}{N} k_B \ln(\Omega)
\Omega = 2^{N_{\mathrm{bonds}}}\left(\frac{6}{16}\right)^{N_{\mathrm{bonds}}/2}
\Delta S

The example of ice

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Giauque and Ashley, (1933)

Bernal and Fowler, (1933)

... under constraints:

1 hydrogen / bond

7

Solid : only a few configurations in the ground state.

Missing entropy ? 

Lattice of oxygens

Hydrogens form the molecules...

\Omega = 2^{N_{\mathrm{bonds}}}\left(\frac{6}{16}\right)^{N_{\mathrm{bonds}}/2}

All hydrogen configurations

Valid configurations in tetrahedrons

Pauling (1935)

s_0 = \frac{1}{N} k_B \ln(\Omega)
\Delta S

The example of ice

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Giauque and Ashley, (1933)

Bernal and Fowler, (1933)

... under constraints:

1 hydrogen / bond

7

Solid : only a few configurations in the ground state.

Missing entropy ? 

Lattice of oxygens

Hydrogens form the molecules...

\Omega = 2^{N_{\mathrm{bonds}}}\left(\frac{6}{16}\right)^{N_{\mathrm{bonds}}/2}

All hydrogen configurations

Valid configurations in tetrahedrons

S_0/N \approx 0.2027 k_B > 0 (!!)

Pauling (1935)

s_0 = \frac{1}{N} k_B \ln(\Omega)
\Delta S

The example of ice

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Giauque and Ashley, (1933)

Bernal and Fowler, (1933)

... under constraints:

1 hydrogen / bond

7

Solid : only a few configurations in the ground state.

Missing entropy ? 

Lattice of oxygens

Hydrogens form the molecules...

\Omega = 2^{N_{\mathrm{bonds}}}\left(\frac{6}{16}\right)^{N_{\mathrm{bonds}}/2}

All hydrogen configurations

Valid configurations in tetrahedrons

S_0/N \approx 0.2027 k_B > 0 (!!)

Pauling (1935)

s_0 = \frac{1}{N} k_B \ln(\Omega)
\Delta S

\(\sim 2^{3\cdot 10^{23}}\) configurations in your ice cube

vs \(\sim 2^{265}\) atoms in the universe

8

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

ising models of frustrated magnetism 

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

ising models of frustrated magnetism 

Ramirez et al (1999) : Dy2Ti2O7

8

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

ising models of frustrated magnetism 

Ramirez et al (1999) : Dy2Ti2O7

\(\xi = \infty\)

Reciprocal space

Fennell et al. (2009) Ho2Ti2O7

8

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

ising models of frustrated magnetism 

Ramirez et al (1999) : Dy2Ti2O7

\(\xi = \infty\)

Reciprocal space

Fennell et al. (2009) Ho2Ti2O7

8

Gauss law  \(\nabla \cdot \mathbf{B} = 0\)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

ising models of frustrated magnetism 

Ramirez et al (1999) : Dy2Ti2O7

\(\xi = \infty\)

Reciprocal space

Fennell et al. (2009) Ho2Ti2O7

Spin flip : 2 charges

Effective Coulomb interaction

 \(|F| \propto q^2/r^2\)

8

Henley (2005, 2010), Castelnovo etal(2008)...

Gauss law  \(\nabla \cdot \mathbf{B} = 0\)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

ising models of frustrated magnetism 

Ramirez et al (1999) : Dy2Ti2O7

\(\xi = \infty\)

Reciprocal space

Fennell et al. (2009) Ho2Ti2O7

Spin flip : 2 charges

Effective Coulomb interaction

 \(|F| \propto q^2/r^2\)

8

Henley (2005, 2010), Castelnovo etal(2008)...

Gauss law  \(\nabla \cdot \mathbf{B} = 0\)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

ising models of frustrated magnetism 

Ramirez et al (1999) : Dy2Ti2O7

\(\xi = \infty\)

Reciprocal space

Fennell et al. (2009) Ho2Ti2O7

Spin flip : 2 charges

Effective Coulomb interaction

 \(|F| \propto q^2/r^2\)

8

Henley (2005, 2010), Castelnovo etal(2008)...

Gauss law  \(\nabla \cdot \mathbf{B} = 0\)

Classical / quantum electrodynamics

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

9

Ising model as limits of quantum models

M. Zhu et al,  PRL (2024), NPJ quantum materials (2025)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

9

Ising model as limits of quantum models

H = J\sum_{\langle i,j \rangle } \sigma_i \sigma_j

M. Zhu et al,  PRL (2024), NPJ quantum materials (2025)

Spin up

Spin down

M. Zhu et al,  PRL (2024), NPJ quantum materials (2025)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Ising model as limits of quantum models

9

Wannier, Houttapel (1950)

With field: Blöte et al (1993), Qian et al (2004), Nyckees et al (JC) (2023)

H = J\sum_{\langle i,j \rangle } \sigma_i \sigma_j

M. Zhu et al,  PRL (2024), NPJ quantum materials (2025)

Spin up

Spin down

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

9

H = J\sum_{\langle i,j \rangle } \sigma_i \sigma_j = \frac{J}{2} \sum_{\triangle i,j,k \triangledown i,j,k } (\sigma_i \sigma_j + \sigma_j \sigma_k + \sigma_k \sigma_i)

Wannier, Houttapel (1950)

With field: Blöte et al (1993), Qian et al (2004), Nyckees et al (JC) (2023)

Ising model as limits of quantum models

M. Zhu et al,  PRL (2024), NPJ quantum materials (2025)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

9

Wannier, Houttapel (1950)

With field: Blöte et al (1993), Qian et al (2004), Nyckees et al (JC) (2023)

Ising model as limits of quantum models

H = J\sum_{\langle i,j \rangle } \sigma_i \sigma_j = \frac{J}{2} \sum_{\triangle i,j,k \triangledown i,j,k } (\sigma_i \sigma_j + \sigma_j \sigma_k + \sigma_k \sigma_i)

M. Zhu et al,  PRL (2024), NPJ quantum materials (2025)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

9

M. Zhu et al,  PRL (2024), NPJ quantum materials (2025)

Wannier, Houttapel (1950)

With field: Blöte et al (1993), Qian et al (2004), Nyckees et al (JC) (2023)

Ising model as limits of quantum models

\(\Omega > 2^{N/3}\) 

H = J\sum_{\langle i,j \rangle } \sigma_i \sigma_j = \frac{J}{2} \sum_{\triangle i,j,k \triangledown i,j,k } (\sigma_i \sigma_j + \sigma_j \sigma_k + \sigma_k \sigma_i)

Solving ising models is hard

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

10

\mathcal{Z}= \sum_{\eta} e^{-\frac{1}{k_BT} E(\eta)}

Solving ising models is hard

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

10

\mathcal{Z}= \sum_{\eta} e^{-\frac{1}{k_BT} E(\eta)}

Solving ising models is hard

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

10

\mathcal{Z}= \sum_{\eta} e^{-\frac{1}{k_BT} E(\eta)}

1D Ising 

Solved exactly 1925

\(2\)x\(2\)

Ising

Solving ising models is hard

1D Ising 

Solved exactly 1925

2D Ising

Solved exactly 1944

\(2\)x\(2\)

\(2^{N}\)x\(2^{N}\)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

10

Ising

Onsager

\mathcal{Z}= \sum_{\eta} e^{-\frac{1}{k_BT} E(\eta)}

Solving ising models is hard

1D Ising 

Solved exactly 1925

2D Ising

Solved exactly 1944

3D Ising

No closed form 

2D  Ising with a field

No closed form

\(2\)x\(2\)

\(2^{N}\)x\(2^{N}\)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

10

Ising

Onsager

\mathcal{Z}= \sum_{\eta} e^{-\frac{1}{k_BT} E(\eta)}

Solving ising models is hard

1D Ising 

Solved exactly 1925

2D Ising

Solved exactly 1944

3D Ising

No closed form 

2D  Ising with a field

No closed form

\(2\)x\(2\)

\(2^{N}\)x\(2^{N}\)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

10

Ising

Onsager

\mathcal{Z}= \sum_{\eta} e^{-\frac{1}{k_BT} E(\eta)}

Solving ising models is hard

1D Ising 

Solved exactly 1925

2D Ising

Solved exactly 1944

3D Ising

No closed form 

2D  Ising with a field

No closed form

A version of the N-Body probleM

\(2\)x\(2\)

\(2^{N}\)x\(2^{N}\)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

10

Ising

Onsager

Solving ising models is hard

1D Ising 

Solved exactly 1925

2D Ising

Solved exactly 1944

3D Ising

No closed form 

2D  Ising with a field

No closed form

A version of the N-Body probleM

\(2\)x\(2\)

\(2^{N}\)x\(2^{N}\)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

10

Ising

Onsager

Spin glasses

Counting the number of ground states: 

#P-complete

(#P : asking how-many solutions in an NP problem.)

Barahona (1982)

Solving ising models is hard

1D Ising 

Solved exactly 1925

2D Ising

Solved exactly 1944

3D Ising

No closed form 

2D  Ising with a field

No closed form

Spin glasses

A version of the N-Body probleM

\(2\)x\(2\)

\(2^{N}\)x\(2^{N}\)

Counting the number of ground states: 

#P-complete

(#P : asking how-many solutions in an NP problem.)

Approximate methods: Monte Carlo, series expansion, field theory at the critical point,  RG & conformal bootstrap, and...

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

10

Ising

Onsager

Barahona (1982)

Tensor networks

Tensor networks

What is a tensor network ?

Why do tensor networks matter?

What are key concepts ? 

11

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

What are tensor networKs & why are they important

11

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

What are tensor networKs & why are they important

11

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

What are tensor networKs & why are they important

  1. Extremely efficient classical computing methods

11

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

What are tensor networKs & why are they important

  1. Extremely efficient classical computing methods
  2. Based on "clever" compression of data

11

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

What are tensor networKs & why are they important

  1. Extremely efficient classical computing methods
  2. Based on "clever" compression of data

1D quantum many-body

\(S=1\) Heisenberg chain

Frustrated spin ladders

Disordered chains

...

White (1992), ...

11

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

What are tensor networKs & why are they important

  1. Extremely efficient classical computing methods
  2. Based on "clever" compression of data

1D quantum many-body

2D and more quantum many-body

\(S=1\) Heisenberg chain

Frustrated spin ladders

Disordered chains

...

Topological order

Two-dimensional t-J model

Magnetization plateaus in Shastry-Sutherland

White (1992), ...

Verstraete et al (2004), Corboz (2014), ....

11

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

What are tensor networKs & why are they important

  1. Extremely efficient classical computing methods
  2. Based on "clever" compression of data

1D quantum many-body

2D and more quantum many-body

Quantum computing

\(S=1\) Heisenberg chain

Frustrated spin ladders

Disordered chains

...

Topological order

Two-dimensional t-J model

Magnetization plateaus in Shastry-Sutherland

Classical simulation of quantum circuits

Challenging quantum supremacy claims

....

White (1992), ...

Verstraete et al (2004), Corboz (2014), ....

Vidal (2003), Zhou, Stoudenmire and Waintal (2020), ...

11

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

What are tensor networKs & why are they important

  1. Extremely efficient classical computing methods
  2. Based on "clever" compression of data

1D quantum many-body

2D and more quantum many-body

\(S=1\) Heisenberg chain

Frustrated spin ladders

Disordered chains

...

...and many more...

Topological order

Two-dimensional t-J model

Magnetization plateaus in Shastry-Sutherland

Classical simulation of quantum circuits

Challenging quantum supremacy claims

....

White (1992), ...

Verstraete et al (2004), Corboz (2014), ....

Vidal (2003), Zhou, Stoudenmire and Waintal (2020), ...

Chemistry, machine learning, mathematics...

Quantum computing

12

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Tensor networks notation

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

Type

Notation

Visualization

Tensor networks notation

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

Scalar

Vector

Type

Notation

Visualization

Matrix

Rank-3 tensor

"Legs"

12

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Tensor networks notation

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

Scalar

Vector

Type

Notation

Visualization

Matrix

Rank-3 tensor

"Legs"

12

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Tensor networks notation

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

Scalar

Vector

Type

Notation

Visualization

Matrix

Rank = # indices = # legs =#dimensions

Rank-3 tensor

"Legs"

12

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Tensor networks notation

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

Scalar

Vector

Type

Notation

Visualization

Matrix

Rank = # indices = # legs =#dimensions

Rank-3 tensor

"Legs"

12

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Size of the index = bond dimension = \(\chi\) or \(D\)

Tensor networks notation

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

Scalar

Vector

Type

Notation

Visualization

Matrix

Rank = # indices = # legs =#dimensions

Rank-3 tensor

Connecting legs = make the product

"CONTRACTION"

"Legs"

12

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Size of the index = bond dimension = \(\chi\) or \(D\)

Tensor networks notation

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

Scalar

Vector

Type

Notation

Visualization

Matrix

Rank = # indices = # legs =#dimensions

Rank-3 tensor

Scalar product

Connecting legs = make the product

"CONTRACTION"

"Legs"

12

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Size of the index = bond dimension = \(\chi\) or \(D\)

Tensor networks notation

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

Scalar

Vector

Type

Notation

Visualization

Matrix

Rank = # indices = # legs =#dimensions

Rank-3 tensor

Scalar product

Matrix-vector product

Connecting legs = make the product

"CONTRACTION"

"Legs"

12

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Size of the index = bond dimension = \(\chi\) or \(D\)

Tensor networks notation

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

Scalar

Vector

Type

Notation

Visualization

Matrix

Rank = # indices = # legs =#dimensions

Rank-3 tensor

Scalar product

Matrix-vector product

Connecting legs = make the product

"CONTRACTION"

"Legs"

Only 2 legs can meet!

12

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Size of the index = bond dimension = \(\chi\) or \(D\)

Tensor networks notation

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

Scalar

Vector

Type

Notation

Visualization

Matrix

Rank = # indices = # legs =#dimensions

Rank-3 tensor

Scalar product

Matrix-vector product

Connecting legs = make the product

"CONTRACTION"

"Legs"

Only 2 legs can meet!

12

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Size of the index = bond dimension = \(\chi\) or \(D\)

You can group indices:

\(\chi \times\chi \times \chi \times \chi\)

tensor

=

Tensor networks notation

Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)

Scalar

Vector

Type

Notation

Visualization

Matrix

Rank = # indices = # legs =#dimensions

Rank-3 tensor

Scalar product

Matrix-vector product

Connecting legs = make the product

"CONTRACTION"

"Legs"

Only 2 legs can meet!

12

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Size of the index = bond dimension = \(\chi\) or \(D\)

You can group indices:

\(\chi \times\chi \times \chi \times \chi\)

tensor

\(\chi^2 \times\chi^2\)

matrix

=

Tensor networks Structure

13

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

A complicated tensor network product giving a matrix

Tensor networks Structure

13

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

A complicated tensor network product giving a matrix

Goldenfeld & Kadanoff, Science, 284 (1999)

Tensor networks Structure

13

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

A complicated tensor network product giving a matrix

Goldenfeld & Kadanoff, Science, 284 (1999)

Can we keep only the "main" information ?

Wikipedia, CC BY license

14

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Image compression

Julia Yeomans

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

14

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Image compression

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

14

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Image compression

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

14

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Image compression

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Image compression

14

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Image compression

14

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

\(\chi = 4\)

Image compression

14

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

\(\chi = 4\)

\(\chi = 20\)

Image compression

14

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

\(\chi = 4\)

\(\chi = 20\)

\(\chi = 100\)

Image compression

14

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

\(\chi = 4\)

\(\chi = 20\)

\(\chi = 100\)

Image compression

14

Image compression

Always ask : why do I expect the bond dimension to be limited?  

\(M\) 

\(U\) 

\(S\) 

\(V\) 

\(=\)

Wikipedia, CC BY license

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

\(\chi = 4\)

\(\chi = 20\)

\(\chi = 100\)

14

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

compressing many-body Wavefunctions

15

Many-body wavefunction

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

15

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

We want to compress it: 

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)

15

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

We want to compress it: 

why (When) do I expect the bond dimension to be limited?  

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)

15

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

We want to compress it: 

why (When) do I expect the bond dimension to be limited?  

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)

ENTANGLEMENT (area law)

15

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

We want to compress it: 

why (When) do I expect the bond dimension to be limited?  

ENTANGLEMENT (area law)

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)

Many-body Hilbert space

15

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

We want to compress it: 

why (When) do I expect the bond dimension to be limited?  

ENTANGLEMENT (area law)

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)

Many-body Hilbert space

\propto L

15

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

We want to compress it: 

why (When) do I expect the bond dimension to be limited?  

Many-body Hilbert space

ENTANGLEMENT (area law)

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)
\propto L

15

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

We want to compress it: 

why (When) do I expect the bond dimension to be limited?  

Many-body Hilbert space

Ground states of gapped, local Hamiltonians

ENTANGLEMENT (area law)

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)
\propto L

15

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

We want to compress it: 

why (When) do I expect the bond dimension to be limited?  

Many-body Hilbert space

Ground states of gapped, local Hamiltonians

ENTANGLEMENT (area law)

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)
\propto \mathrm{const}
\propto L

15

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

compressing many-body Wavefunctions

Many-body wavefunction =huge tensor: 

We want to compress it: 

why (When) do I expect the bond dimension to be limited?  

Many-body Hilbert space

Ground states of gapped, local Hamiltonians

ENTANGLEMENT (area law)

|\phi\rangle = \sum_{\{s_j\}} \phi_{\dots, s_{j-1}, s_j, s_{j+1}, \dots} |\dots, s_{j-1}, s_{j}, s_{j+1}, \dots\rangle

High number of parameters

(2^L)

Much smaller number

(\chi \times 2 \times \chi)
\propto \mathrm{const}
\propto L

15

Why tensor networks

should be able to solve Ising models

Why tensor networks

should be able to solve Ising models

1. The 1D Ising model partition function is a TN

2. The solution of the 2D Ising model is TN-related

3. Successes / failures

16

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

The 1D ising model solution is a simple tensor network

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

The 1D ising model solution is a simple tensor network

\mathcal{Z}_L = \sum_{\sigma_1,\sigma_2,\dots\sigma_L} \prod_{i}e^{\beta J \sigma_i \sigma_{i+1}}

16

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

The 1D ising model solution is a simple tensor network

\mathcal{Z}_L = \sum_{\sigma_1,\sigma_2,\dots\sigma_L} \prod_{i}e^{\beta J \sigma_i \sigma_{i+1}}
T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}

16

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

The 1D ising model solution is a simple tensor network

T^L = \left(P^{-1} \Lambda P\right)^L = P^{-1} \Lambda^L P

The partition function is just the exponentiation of a 2x2 matrix!

\mathcal{Z}_L = \sum_{\sigma_1,\sigma_2,\dots\sigma_L} \prod_{i}e^{\beta J \sigma_i \sigma_{i+1}}
T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}

1. Diagonalize

16

\mathcal{Z}_L = (T^L)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

The 1D ising model solution is a simple tensor network

T^L = \left(P^{-1} \Lambda P\right)^L = P^{-1} \Lambda^L P

The partition function is just the exponentiation of a 2x2 matrix!

\Lambda^{L} = \lambda_{+}^{L} \begin{pmatrix} 1& 0 \\ 0 & \left(\frac{\lambda_{-}}{\lambda_{+}}\right)^L \end{pmatrix} \xrightarrow[L \to \infty]{} \lambda_{+}^{L} \begin{pmatrix} 1& 0 \\ 0 & 0 \end{pmatrix}
\mathcal{Z}_L = \sum_{\sigma_1,\sigma_2,\dots\sigma_L} \prod_{i}e^{\beta J \sigma_i \sigma_{i+1}}
T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}
\mathcal{Z}_L = (T^L)

1. Diagonalize

2. Compute

16

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

The 2d ising model : transfer matrix & tensor network

T = \begin{pmatrix} e^{\beta J} &e^{-\beta J}\\ e^{-\beta J} &e^{\beta J}\\ \end{pmatrix}

Generalized kronecker \(\delta\) tensor

17

R. J. Baxter, J. Math. Phys. 9, 1968

R. Orús, G. Vidal, PRB 78, 2008

T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

The 2d ising model : transfer matrix & tensor network

Ferromagnet / antiferromagnet: Onsager

In a field : no closed form solution

\(L\) 

\(M\) 

\(\mathcal{T}\) : \(2^{L} \times 2^{L}\)

\(\mathcal{Z} = \mathcal{T}^{M}\) 

(But the amount of information stored: \(2\times 2\times 2\times 2\))

R. J. Baxter, J. Math. Phys. 9, 1968; Orús, Vidal, PRB 78, 2008;

V. Zauner-Stauber et. al. PRB 97,2018; M. Fishman et. al PRB 98, 2018  

17

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

"Compressing" the tensor network : Power method

\(\mathcal{T}\) : \(2^{L} \times 2^{L}\)

\(\mathcal{Z} = \mathcal{T}^{M}\) 

Size :  \(2\times 2\times 2\)

R. J. Baxter, J. Math. Phys. 9, 1968; Orús, Vidal, PRB 78, 2008;

V. Zauner-Stauber et. al. PRB 97,2018; M. Fishman et. al PRB 98, 2018  

18

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

"Compressing" the tensor network : Power method

\(\mathcal{T}\) : \(2^{L} \times 2^{L}\)

\(\mathcal{Z} = \mathcal{T}^{M}\) 

Size :  \(4\times 2\times 4\)

R. J. Baxter, J. Math. Phys. 9, 1968; Orús, Vidal, PRB 78, 2008;

V. Zauner-Stauber et. al. PRB 97,2018; M. Fishman et. al PRB 98, 2018  

18

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

"Compressing" the tensor network : Power method

\(\mathcal{T}\) : \(2^{L} \times 2^{L}\)

\(\mathcal{Z} = \mathcal{T}^{M}\) 

Size :  \(8\times 2\times 8\)

R. J. Baxter, J. Math. Phys. 9, 1968; Orús, Vidal, PRB 78, 2008;

V. Zauner-Stauber et. al. PRB 97,2018; M. Fishman et. al PRB 98, 2018  

18

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

"Compressing" the tensor network : Power method

\(\mathcal{T}\) : \(2^{L} \times 2^{L}\)

\(\mathcal{Z} = \mathcal{T}^{M}\) 

Size :  \(2^{r}\times 2\times 2^{r}\)

\(A\)

R. J. Baxter, J. Math. Phys. 9, 1968; Orús, Vidal, PRB 78, 2008;

V. Zauner-Stauber et. al. PRB 97,2018; M. Fishman et. al PRB 98, 2018  

18

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

"Compressing" the tensor network : Power method

\(\mathcal{T}\) : \(2^{L} \times 2^{L}\)

\(\mathcal{Z} = \mathcal{T}^{M}\) 

Size :  \(2^{r}\times 2\times 2^{r}\)

\(A\)

Question : can we approximate  \(A\) by a \(\chi\times 2\times \chi\) tensor ? 

Answer: yes, if the area-law is respected!

R. J. Baxter, J. Math. Phys. 9, 1968; Orús, Vidal, PRB 78, 2008;

V. Zauner-Stauber et. al. PRB 97,2018; M. Fishman et. al PRB 98, 2018  

18

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

"Compressing" the tensor network : Power method

\(\mathcal{T}\) : \(2^{L} \times 2^{L}\)

\(\mathcal{Z} = \mathcal{T}^{M}\) 

Size :  \(2^{r}\times 2\times 2^{r}\)

\(A\)

Question : can we approximate  \(A\) by a \(\chi\times 2\times \chi\) tensor ? 

Answer: yes, if the area-law is respected!

18

R. J. Baxter, J. Math. Phys. 9, 1968; Orús, Vidal, PRB 78, 2008;

V. Zauner-Stauber et. al. PRB 97,2018; M. Fishman et. al PRB 98, 2018  

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

\(\mathcal{T}\) : \(2^{L} \times 2^{L}\)

\(\mathcal{Z} = \mathcal{T}^{M}\) 

Size :  \( \chi\times 2\times \chi\)

\(A\)

Question : can we approximate  \(A\) by a \(\chi\times 2\times \chi\) tensor ? 

Answer: yes, if the area-law is respected!

"Compressing" the tensor network : Power method

18

R. J. Baxter, J. Math. Phys. 9, 1968; Orús, Vidal, PRB 78, 2008;

V. Zauner-Stauber et. al. PRB 97,2018; M. Fishman et. al PRB 98, 2018  

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

\(\mathcal{T}\) : \(2^{L} \times 2^{L}\)

\(\mathcal{Z} = \mathcal{T}^{M}\) 

Size :  \( \chi\times 2\times \chi\)

\(A\)

Question : can we approximate  \(A\) by a \(\chi\times 2\times \chi\) tensor ? 

Answer: yes, if the area-law is respected!

"Compressing" the tensor network : Power method

18

R. J. Baxter, J. Math. Phys. 9, 1968; Orús, Vidal, PRB 78, 2008;

V. Zauner-Stauber et. al. PRB 97,2018; M. Fishman et. al PRB 98, 2018  

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

\(\mathcal{T}\) : \(2^{L} \times 2^{L}\)

\(\mathcal{Z} = \mathcal{T}^{M}\) 

Size :  \( \chi\times 2\times \chi\)

\(A\)

Question : can we approximate  \(A\) by a \(\chi\times 2\times \chi\) tensor ? 

Answer: yes, if the area-law is respected!

"Compressing" the tensor network : Power method

18

R. J. Baxter, J. Math. Phys. 9, 1968; Orús, Vidal, PRB 78, 2008;

V. Zauner-Stauber et. al. PRB 97,2018; M. Fishman et. al PRB 98, 2018  

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

\(\mathcal{Z} = \) 

"Compressing" the tensor network : Power method

\(A\)

18

R. J. Baxter, J. Math. Phys. 9, 1968; Orús, Vidal, PRB 78, 2008;

V. Zauner-Stauber et. al. PRB 97,2018; M. Fishman et. al PRB 98, 2018  

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

\(\mathcal{Z} = \) 

Back to 1d

19

R. J. Baxter, J. Math. Phys. 9, 1968; Orús, Vidal, PRB 78, 2008;

V. Zauner-Stauber et. al. PRB 97,2018; M. Fishman et. al PRB 98, 2018  

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Back to 1d

\(\mathcal{Z} = \) 

R. J. Baxter, J. Math. Phys. 9, 1968; Orús, Vidal, PRB 78, 2008;

V. Zauner-Stauber et. al. PRB 97,2018; M. Fishman et. al PRB 98, 2018  

19

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Back to 1d

\(\mathcal{Z} = \) 

R. J. Baxter, J. Math. Phys. 9, 1968; Orús, Vidal, PRB 78, 2008;

V. Zauner-Stauber et. al. PRB 97,2018; M. Fishman et. al PRB 98, 2018  

19

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Back to 1d

\(\mathcal{Z} = \) 

\(\overline{m} = \) 

Local observable

\(\mathcal{Z}\)

R. J. Baxter, J. Math. Phys. 9, 1968; Orús, Vidal, PRB 78, 2008;

V. Zauner-Stauber et. al. PRB 97,2018; M. Fishman et. al PRB 98, 2018  

19

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Successes and Failures

2D square lattice Ising model

... and many more, e.g. Huse-Fisher universality class 

20

Orús, Vidal, PRB 78, 2008  

 Nyckees, JC, Mila (2021)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Successes and Failures

2D square lattice Ising model

20

Orús, Vidal, PRB 78, 2008  

Vanhecke, JC et al (2021)

... and many more, e.g. Huse-Fisher universality class 

 Nyckees, JC, Mila (2021)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Successes and Failures

2D square lattice Ising model

20

Orús, Vidal, PRB 78, 2008  

Vanhecke, JC et al (2021)

... and many more, e.g. Huse-Fisher universality class 

 Nyckees, JC, Mila (2021)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Successes and Failures

2D square lattice Ising model

20

Orús, Vidal, PRB 78, 2008  

Vanhecke, JC et al (2021)

... and many more, e.g. Huse-Fisher universality class 

 Nyckees, JC, Mila (2021)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Successes and Failures

2D square lattice Ising model

20

Orús, Vidal, PRB 78, 2008  

Vanhecke, JC et al (2021)

... and many more, e.g. Huse-Fisher universality class 

 Nyckees, JC, Mila (2021)

Solving domino games for frustrated Ising models

21

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Another origin of tensor networks:  Domino tilings

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

21

Another origin of tensor networks:  Domino tilings

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

21

Another origin of tensor networks:  Domino tilings

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

21

Another origin of tensor networks:  Domino tilings

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

21

Another origin of tensor networks:  Domino tilings

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

# of ways to place dominoes such that

- the lattice is fully covered

-no overlaps 

21

Another origin of tensor networks:  Domino tilings

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

# of ways to place dominoes such that

- the lattice is fully covered

-no overlaps 

21

Another origin of tensor networks:  Domino tilings

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

# of ways to place dominoes such that

- the lattice is fully covered

-no overlaps 

21

Another origin of tensor networks:  Domino tilings

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

# of ways to place dominoes such that

- the lattice is fully covered

-no overlaps 

21

Another origin of tensor networks:  Domino tilings

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

# of ways to place dominoes such that

- the lattice is fully covered

-no overlaps 

21

Another origin of tensor networks:  Domino tilings

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

# of ways to place dominoes such that

- the lattice is fully covered

-no overlaps 

 \(\Omega \approx 1,3385^ N\)

21

Another origin of tensor networks:  Domino tilings

Kasteleyn || Temperley & Fisher (1961), R. J. Baxter, (1968)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Couting domino tilings

22

# of ways to place dominoes such that

- the lattice is fully covered

-no overlaps 

 \(\Omega \approx 1,3385^ N\)

Kasteleyn || Temperley & Fisher (1961), R. J. Baxter, (1968)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Couting domino tilings

# of ways to place dominoes such that

- the lattice is fully covered

-no overlaps 

 \(\Omega \approx 1,3385^ N\)

\Omega =

\(2 \times 2 \times 2 \times 2\)

22

Kasteleyn || Temperley & Fisher (1961), R. J. Baxter, (1968)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Couting domino tilings

# of ways to place dominoes such that

- the lattice is fully covered

-no overlaps 

 \(\Omega \approx 1,3385^ N\)

\Omega =

\(2 \times 2 \times 2 \times 2\)

= 1

22

Kasteleyn || Temperley & Fisher (1961), R. J. Baxter, (1968)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Couting domino tilings

# of ways to place dominoes such that

- the lattice is fully covered

-no overlaps 

 \(\Omega \approx 1,3385^ N\)

\Omega =

\(2 \times 2 \times 2 \times 2\)

= 1
= 1

22

Kasteleyn || Temperley & Fisher (1961), R. J. Baxter, (1968)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Couting domino tilings

# of ways to place dominoes such that

- the lattice is fully covered

-no overlaps 

 \(\Omega \approx 1,3385^ N\)

\Omega =

\(2 \times 2 \times 2 \times 2\)

= 1
= 0
= 1

22

Kasteleyn || Temperley & Fisher (1961), R. J. Baxter, (1968)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Couting domino tilings

# of ways to place dominoes such that

- the lattice is fully covered

-no overlaps 

 \(\Omega \approx 1,3385^ N\)

\Omega =

\(2 \times 2 \times 2 \times 2\)

= 1
= 0
= 0
= 1

Kasteleyn || Temperley & Fisher (1961), R. J. Baxter, (1968)

22

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Couting domino tilings

# of ways to place dominoes such that

- the lattice is fully covered

-no overlaps 

 \(\Omega \approx 1,3385^ N\)

\Omega =

\(2 \times 2 \times 2 \times 2\)

= 1
= 0
= 0
= 1

Baxter 1968 : First "tensor network" equations to solve this problem. 

Kasteleyn || Temperley & Fisher (1961), R. J. Baxter, (1968)

22

23

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Ground state: 

Vanhecke, JC et al (2021)

Simple case : triangular lattice Ising antiferromagnet

Kasteleyn, (1961), Fisher (1966)

23

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Ground state: 

Vanhecke, JC et al (2021)

Simple case : triangular lattice Ising antiferromagnet

Kasteleyn, (1961), Fisher (1966)

23

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Ground state: 

Vanhecke, JC et al (2021)

Simple case : triangular lattice Ising antiferromagnet

Kasteleyn, (1961), Fisher (1966)

Dimer coverings!

23

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Ground state: 

Vanhecke, JC et al (2021)

\(2 \times 2 \times 2\)

\(=0\)

Simple case : triangular lattice Ising antiferromagnet

Kasteleyn, (1961), Fisher (1966)

Dimer coverings!

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Ground state: 

Vanhecke, JC et al (2021)

\(2 \times 2 \times 2\)

\(=0\)

Simple case : triangular lattice Ising antiferromagnet

Kasteleyn, (1961), Fisher (1966)

23

Dimer coverings!

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Ground state: 

Vanhecke, JC et al (2021)

\(2 \times 2 \times 2\)

\(=0\)

Simple case : triangular lattice Ising antiferromagnet

Kasteleyn, (1961), Fisher (1966)

23

Dimer coverings!

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Finite temperature

\(2 \times 2 \times 2\)

Vanhecke, JC et al (2021)

24

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

\(2 \times 2 \times 2\)

Vanhecke, JC et al (2021)

Finite temperature

24

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

\(2 \times 2 \times 2\)

Vanhecke, JC et al (2021)

\(=e^{-\beta J}\)

Same structure and size

Different entries

Finite temperature

24

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

\(2 \times 2 \times 2\)

Vanhecke, JC et al (2021)

\(=e^{-\beta J}\)

Same structure and size

Different entries

24

Finite temperature

1. Convergence depends on the formulation!

2. Weighted counting problem!

To retain:

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

More complex Ising models? 

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)

L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)

Z. Luo et al. Science 363, (2019)

JC et al., PRB 104 (2021)

25

25

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

More complex Ising models? 

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)

L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)

Z. Luo et al. Science 363, (2019)

JC et al., PRB 104 (2021)

H =
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

More complex Ising models? 

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)

L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)

Z. Luo et al. Science 363, (2019)

JC et al., PRB 104 (2021)

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

25

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

More complex Ising models? 

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)

L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)

Z. Luo et al. Science 363, (2019)

JC et al., PRB 104 (2021)

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3}} \sigma_i \sigma_j
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

25

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

More complex Ising models? 

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)

L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)

Z. Luo et al. Science 363, (2019)

JC et al., PRB 104 (2021)

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3}} \sigma_i \sigma_j
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

Can we still map to "domino" tilings ?

25

26

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Can we still map to "domino" tilings ? YES!

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

26

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Can we still map to "domino" tilings ? YES!

Split the Hamiltonian differently: ground states are tilings of local g.s. configurations! 

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

26

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Can we still map to "domino" tilings ? YES!

Split the Hamiltonian differently: ground states are tilings of local g.s. configurations! 

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

LINEAR PROGRAM:

26

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Can we still map to "domino" tilings ? YES!

Split the Hamiltonian differently: ground states are tilings of local g.s. configurations! 

LINEAR PROGRAM:

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

1. Split the lattice into clusters that overlap

26

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Can we still map to "domino" tilings ? YES!

Split the Hamiltonian differently: ground states are tilings of local g.s. configurations! 

LINEAR PROGRAM:

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

1. Split the lattice into clusters that overlap

2. Find the optimal energy lower-bound

26

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Can we still map to "domino" tilings ? YES!

Split the Hamiltonian differently: ground states are tilings of local g.s. configurations! 

LINEAR PROGRAM:

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

1. Split the lattice into clusters that overlap

2. Find the optimal energy lower-bound

3. Contract / extend to finite T

26

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Can we still map to "domino" tilings ? YES!

Split the Hamiltonian differently: ground states are tilings of local g.s. configurations! 

LINEAR PROGRAM:

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

1. Split the lattice into clusters that overlap

2. Find the optimal energy lower-bound

3. Contract / extend to finite T

26

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Can we still map to "domino" tilings ? YES!

Split the Hamiltonian differently: ground states are tilings of local g.s. configurations! 

LINEAR PROGRAM:

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

1. Split the lattice into clusters that overlap

2. Find the optimal energy lower-bound

3. Contract / extend to finite T

26

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Can we still map to "domino" tilings ? YES!

Split the Hamiltonian differently: ground states are tilings of local g.s. configurations! 

LINEAR PROGRAM:

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

1. Split the lattice into clusters that overlap

2. Find the optimal energy lower-bound

3. Contract / extend to finite T

26

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Can we still map to "domino" tilings ? YES!

Split the Hamiltonian differently: ground states are tilings of local g.s. configurations! 

LINEAR PROGRAM:

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

1. Split the lattice into clusters that overlap

2. Find the optimal energy lower-bound

3. Contract / extend to finite T

26

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Can we still map to "domino" tilings ? YES!

Split the Hamiltonian differently: ground states are tilings of local g.s. configurations! 

LINEAR PROGRAM:

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

1. Split the lattice into clusters that overlap

2. Find the optimal energy lower-bound

3. Contract / extend to finite T

26

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Can we still map to "domino" tilings ? YES!

Split the Hamiltonian differently: ground states are tilings of local g.s. configurations! 

LINEAR PROGRAM:

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

1. Split the lattice into clusters that overlap

2. Find the optimal energy lower-bound

3. Contract / extend to finite T

26

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Can we still map to "domino" tilings ? YES!

Split the Hamiltonian differently: ground states are tilings of local g.s. configurations! 

LINEAR PROGRAM:

C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);

B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);

B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)

1. Split the lattice into clusters that overlap

2. Find the optimal energy lower-bound

3. Contract / extend to finite T

Applications and perspectives

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Exotic physics in kagome antiferromagnets

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3}} \sigma_i \sigma_j
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

27

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Exotic physics in kagome antiferromagnets

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3}} \sigma_i \sigma_j
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)

J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)

1. Three unexpected spin liquid phases

27

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Exotic physics in kagome antiferromagnets

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3}} \sigma_i \sigma_j
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

JC, B. Vanhecke et. al., PRB 106 (2022)

1. Three unexpected spin liquid phases

27

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Exotic physics in kagome antiferromagnets

1. Three unexpected spin liquid phases

2. Cascade of "topological" phase transitions

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3}} \sigma_i \sigma_j
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

JC, B. Vanhecke et. al., PRB 106 (2022)

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

27

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Exotic physics in kagome antiferromagnets

2. Cascade of "topological" phase transitions

Classical XY models for kagome superconductors, Understanding topological order, Studying quantum frustrated magnets, ... 

H =
J_2 \sum_{\langle i,j \rangle_{2}} \sigma_i \sigma_j
J_{3} \sum_{\langle i,j \rangle_{3}} \sigma_i \sigma_j
+
+
J_1 \sum_{\langle i,j \rangle_1} \sigma_i \sigma_j

JC, B. Vanhecke et. al., PRB 106 (2022)

A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)

1. Three unexpected spin liquid phases

27

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Perspectives

28

Tensor network methods

"Classical" and quantum frustrated magnetism

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Perspectives

28

Tensor network methods

"Classical" and quantum frustrated magnetism

Consequences for studying 2D quantum many-body problems ?

Dealing with non-local constraints ?

Combining with Monte Carlo methods? 

Wei Tang et al (2024, 2025)

Châtelain & Gendiar (2020)

Frias-Perez et al (2023)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Perspectives

28

Tensor network methods

"Classical" and quantum frustrated magnetism

Consequences for studying 2D quantum many-body problems ?

Dealing with non-local constraints ?

Range of frustration: hard versus "weak" frustration ?

Combining with Monte Carlo methods? 

Generalized RK wavefunctions (variational ?) and topology

Wei Tang et al (2024, 2025)

Châtelain & Gendiar (2020)

Frias-Perez et al (2023)

Giudice et al (2022)

Ronceray & Le Floch (2020)

Interpretation of entanglement ?

Carignano et al (2024)

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Take-home message

29

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Take-home message

29

Nature can produce complex structures even in simple situations,

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Take-home message

29

Nature can produce complex structures even in simple situations,

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Take-home message

Nature can produce complex structures even in simple situations,

 

and can obey simple laws even in complex situations.

29

COLBOIS| ISING, ICE AND DOMINOES |  09.2025

Take-home message

Tensor networks:

a way to capture those complex structures

Boiling down to simple laws?

Thank you for your attention!

29

Nature can produce complex structures even in simple situations,

 

and can obey simple laws even in complex situations.

Ising, ice and dominos: an introduction to tensor networks

By Jeanne Colbois

Ising, ice and dominos: an introduction to tensor networks

Seminar at Institut Néel

  • 29