Jeanne Colbois PRO
Physicist @ CNRS. Here you find slides for *some* of my presentations, as well as visual abstracts for recent publications.
Jeanne Colbois | Institut Néel
Journée Théorie CPTGA 2025 - 08/10/2025
Frustrated magnetism
Classical statistical mechanics
Jeanne Colbois | Institut Néel
Journée Théorie CPTGA 2025 - 08/10/2025
Frustrated magnetism
Classical statistical mechanics
Tensor networks
Jeanne Colbois | Institut Néel
Journée Théorie CPTGA 2025 - 08/10/2025
1
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Andrew Smerald
KIT | Germany
Frédéric Mila
EPFL | Switzerland
Frank Verstraete
Ghent University | Belgium
Laurens Vanderstraeten
Ghent University | Belgium
Samuel Nyckees
EPFL | Switzerland
Afonso Rufino
EPFL | Switzerland
Bram Vanhecke
University of Vienna | Austria
1. Classical frustrated magnetism?
2. Tensor networks for classical statistical mechanics
3. Frustrated magnetism : Ising models as weighted counting problems
4. Some applications & perspectives
2
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
What is it?
Why study it?
Why is it difficult?
3
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
3
Spin up
Spin down
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
3
Spin up
Spin down
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Magnetic order
Ideal paramagnet
\(q_x\)
\(q_x\)
\(\xi = \infty\)
\(\xi = 0\)
\(q_y\)
\(q_y\)
3
Spin up
Spin down
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Magnetic order
Ideal paramagnet
\(q_x\)
\(q_x\)
\(\xi = \infty\)
\(\xi = 0\)
\(q_y\)
\(q_y\)
Spin up
Spin down
Competing interactions
\(2100\) sites : \(2^{700} \) ground states!
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Magnetic order
Ideal paramagnet
\(q_x\)
\(q_x\)
\(\xi = \infty\)
\(\xi = 0\)
\(q_y\)
\(q_y\)
3
Spin up
Spin down
Competing interactions
\(2100\) sites : \(2^{700} \) ground states!
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Magnetic order
Ideal paramagnet
\(q_x\)
\(q_x\)
\(\xi = \infty\)
\(\xi = 0\)
\(q_y\)
\(q_y\)
3
Spin up
Spin down
Competing interactions
\(2100\) sites : \(2^{700} \) ground states!
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
A. Sütö, Z. Phys. B 44, (1981)
W. Apel, H.-U. Everts, J. Stat. Mech, (2011)
Magnetic order
Ideal paramagnet
\(q_x\)
\(q_x\)
\(\xi = \infty\)
\(\xi = 0\)
\(q_y\)
\(q_y\)
Spin liquid
\(q_x\)
\(q_y\)
3
4
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
\(\xi = \infty\)
Fennell et al. (2009)
Neutron scattering on Ho2Ti2O7
Ramirez et al (1999) : Dy2Ti2O7
4
Gauss law \(\nabla \cdot \mathbf{B} = 0\)
Constraint
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
\(\xi = \infty\)
Fennell et al. (2009)
Neutron scattering on Ho2Ti2O7
Ramirez et al (1999) : Dy2Ti2O7
4
Gauss law \(\nabla \cdot \mathbf{B} = 0\)
Constraint
Classical / quantum electrodynamics
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
\(\xi = \infty\)
Fennell et al. (2009)
Neutron scattering on Ho2Ti2O7
Effective Coulomb interaction \(|F| \propto q^2/r^2\)
Henley (2005, 2010), Castelnovo etal(2008)
5
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Magnetic order
Spin liquids
5
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Magnetic order
Spin liquids
Magnetic moment fragmentation
Brooks-Bartlett et al (2014), Canals et al (2016), Petit et al (2016)
Each spin participates to both phases!
1D Ising
Solved exactly 1925
Planar Ising models
Solved exactly 1944 / 1960
Non-planar Ising models :
no closed forms
\(2\)x\(2\)
\(2^{N}\)x\(2^{N}\)
6
Ising
Onsager
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
1D Ising
Solved exactly 1925
Planar Ising models
Solved exactly 1944 / 1960
Non-planar Ising models :
no closed forms
\(2\)x\(2\)
\(2^{N}\)x\(2^{N}\)
6
Ising
Onsager
Counting the number of ground states in spin glasses
#P-complete
Barahona (1982)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
1D Ising
Solved exactly 1925
Planar Ising models
Solved exactly 1944 / 1960
Non-planar Ising models :
no closed forms
\(2\)x\(2\)
\(2^{N}\)x\(2^{N}\)
6
Ising
Onsager
Counting the number of ground states in spin glasses
#P-complete
Methods:
Monte Carlo, series expansion, RG & CFT
Barahona (1982)
Ergodicity issues
Limited to some regimes
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
What is a tensor network ?
Tensor networks as compression schemes
Ising models as tensor networks
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
7
Extremely efficient classical computing methods
Based on "clever" compression of data
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
7
Extremely efficient classical computing methods
Based on "clever" compression of data
1D quantum
\(S=1\) Heisenberg chain
Symmetry-protected topological phases
...
White (1992), ...
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
7
Extremely efficient classical computing methods
Based on "clever" compression of data
1D quantum
2D quantum and more
\(S=1\) Heisenberg chain
Symmetry-protected topological phases
...
Topological order
Two-dimensional t-J model
...
White (1992), ...
Verstraete et al (2004), Corboz (2014), ....
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
7
Extremely efficient classical computing methods
Based on "clever" compression of data
1D quantum
2D quantum and more
\(S=1\) Heisenberg chain
Symmetry-protected topological phases
...
Topological order
Two-dimensional t-J model
...
Simulation of quantum circuits Challenging quantum supremacy
...
White (1992), ...
Verstraete et al (2004), Corboz (2014), ....
Vidal (2003),
Zhou, Stoudenmire & Waintal (2020), ...
Quantum computing
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
7
Extremely efficient classical computing methods
Based on "clever" compression of data
1D quantum
2D quantum and more
\(S=1\) Heisenberg chain
Symmetry-protected topological phases
...
Topological order
Two-dimensional t-J model
...
Simulation of quantum circuits Challenging quantum supremacy
...
White (1992), ...
Verstraete et al (2004), Corboz (2014), ....
Vidal (2003),
Zhou, Stoudenmire & Waintal (2020), ...
Chemistry, machine learning, mathematics...
Quantum computing
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
7
Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)
8
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Type
Notation
Visualization
Scalar
Vector
Matrix
Rank-3 tensor
"Legs"
Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)
8
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Type
Notation
Visualization
Scalar
Vector
Matrix
Rank-3 tensor
"Legs"
Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)
8
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Type
Notation
Visualization
Scalar
Vector
Matrix
Rank = # indices = # legs =#dimensions
Rank-3 tensor
"Legs"
Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)
8
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Type
Notation
Visualization
Scalar
Vector
Type
Notation
Visualization
Matrix
Rank = # indices = # legs =#dimensions
Rank-3 tensor
"Legs"
Size of the index = bond dimension = \(\chi\) or \(D\)
Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
8
Scalar
Vector
Type
Notation
Visualization
Matrix
Rank = # indices = # legs =#dimensions
Rank-3 tensor
Connecting legs = make the product
"CONTRACTION"
"Legs"
Size of the index = bond dimension = \(\chi\) or \(D\)
Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
8
Scalar
Vector
Type
Notation
Visualization
Matrix
Rank = # indices = # legs =#dimensions
Rank-3 tensor
Scalar product
Connecting legs = make the product
"CONTRACTION"
"Legs"
Size of the index = bond dimension = \(\chi\) or \(D\)
Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
8
Scalar
Vector
Type
Notation
Visualization
Matrix
Rank = # indices = # legs =#dimensions
Rank-3 tensor
Scalar product
Matrix-vector product
Connecting legs = make the product
"CONTRACTION"
"Legs"
Size of the index = bond dimension = \(\chi\) or \(D\)
Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
8
Scalar
Vector
Type
Notation
Visualization
Matrix
Rank = # indices = # legs =#dimensions
Rank-3 tensor
Scalar product
Matrix-vector product
Connecting legs = make the product
"CONTRACTION"
"Legs"
Size of the index = bond dimension = \(\chi\) or \(D\)
You can group indices:
\(\chi \times\chi \times \chi \times \chi\)
tensor
Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
8
Scalar
Vector
Type
Notation
Visualization
Matrix
Rank = # indices = # legs =#dimensions
Rank-3 tensor
Scalar product
Matrix-vector product
Connecting legs = make the product
"CONTRACTION"
"Legs"
Size of the index = bond dimension = \(\chi\) or \(D\)
You can group indices:
\(\chi \times\chi \times \chi \times \chi\)
tensor
\(\chi^2 \times\chi^2\)
matrix
Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, (1971)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
8
9
Many-body wavefunction
High number of parameters
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Many-body wavefunction =huge tensor:
High number of parameters
9
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Many-body wavefunction =huge tensor:
High number of parameters
Much smaller number
9
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
We want to "factorize" or compress it:
Many-body wavefunction =huge tensor:
High number of parameters
Much smaller number
We want to "factorize" or compress it:
9
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Many-body wavefunction =huge tensor:
High number of parameters
Much smaller number
ENTANGLEMENT (area law)
We want to "factorize" or compress it:
9
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Many-body wavefunction =huge tensor:
ENTANGLEMENT (area law)
High number of parameters
Much smaller number
Many-body Hilbert space
We want to "factorize" or compress it:
9
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Many-body wavefunction =huge tensor:
ENTANGLEMENT (area law)
High number of parameters
Much smaller number
Many-body Hilbert space
We want to "factorize" or compress it:
9
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Many-body wavefunction =huge tensor:
Many-body Hilbert space
ENTANGLEMENT (area law)
High number of parameters
Much smaller number
We want to "factorize" or compress it:
9
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Many-body wavefunction =huge tensor:
Many-body Hilbert space
Ground states of gapped, local Hamiltonians
ENTANGLEMENT (area law)
High number of parameters
Much smaller number
We want to "factorize" or compress it:
9
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Many-body wavefunction =huge tensor:
Many-body Hilbert space
Ground states of gapped, local Hamiltonians
ENTANGLEMENT (area law)
High number of parameters
Much smaller number
We want to "factorize" or compress it:
9
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Many-body wavefunction =huge tensor:
Many-body Hilbert space
Ground states of gapped, local Hamiltonians
ENTANGLEMENT (area law)
High number of parameters
Much smaller number
9
We want to "factorize" or compress it:
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
10
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
10
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
10
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
The partition function is just the exponentiation of a 2x2 matrix!
10
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
The partition function is just the exponentiation of a 2x2 matrix!
1. Diagonalize
10
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
The partition function is just the exponentiation of a 2x2 matrix!
1. Diagonalize
2. Compute
10
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Leading eigenvalue!
Generalized kronecker \(\delta\) tensor
11
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
11
Decomposition & reshaping:
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
11
Decomposition & reshaping:
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Goldenfeld & Kadanoff, Science, 284 (1999)
12
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
12
Baxter, 1968; Orús, Vidal, 2008; Zauner-Stauber et. al. 2018; Fishman et. al 2018
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
12
Baxter, 1968; Orús, Vidal, 2008; Zauner-Stauber et. al. 2018; Fishman et. al 2018
2D classical is "like" 1D quantum
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
12
Baxter, 1968; Orús, Vidal, 2008; Zauner-Stauber et. al. 2018; Fishman et. al 2018
R. J. Baxter, 1968; T. Nishino, K. Okunishi, 1996;
Corboz et al (2014), ...
Building block for quantum problems : algorithms are already optimized
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
12
Baxter, 1968; Orús, Vidal, 2008; Zauner-Stauber et. al. 2018; Fishman et. al 2018
R. J. Baxter, 1968; T. Nishino, K. Okunishi, 1996;
Corboz et al (2014), ...
Levin & Nave, 2007; Evenbly & Vidal (2014); Ebel, Kennedy, Rychkov (2025)....
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
12
Baxter, 1968; Orús, Vidal, 2008; Zauner-Stauber et. al. 2018; Fishman et. al 2018
R. J. Baxter, 1968; T. Nishino, K. Okunishi, 1996;
Corboz et al (2014), ...
Levin & Nave, 2007; Evenbly & Vidal (2014); Ebel, Kennedy, Rychkov (2025)....
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
13
\(\langle O \rangle= \)
Local observable:
\(\mathcal{Z}\)
Correlations:
Correlation length:
\(\langle O_i O_j \rangle =\)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
2D square lattice Ising model
14
Orús, Vidal, PRB 78, 2008
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
2D square lattice Ising model
14
Orús, Vidal, PRB 78, 2008
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Nyckees, JC, Mila, NPB (2021)
2D chiral Potts model
Vanhecke, JC et al (2021)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
15
Vanhecke, JC et al (2021)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
15
Vanhecke, JC et al (2021)
Fails in the presence of frustration and macroscopic g.s. degeneracy
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
15
Vanhecke, JC et al (2021)
Fails in the presence of frustration and macroscopic g.s. degeneracy
B. Vanhecke, JC, et al. PRR 3, (2021)
\(\rightarrow\) in spin glasses
\(\rightarrow \) in translation-invariant frustrated Ising models
\(\rightarrow\) in lattice gas models
\(\rightarrow\) in frustrated XY models
S. A. Akimenko, PRE 107, (2023)
F.F. Song, T.-Y. Lin, G. M. Zhang, PRB (2023)
C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)
Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)
J. G. Liu, L. Wang, P. Zhang, PRL 126, (2021)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
15
16
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
16
Numerical problem
Cancellation of small and large factors
C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)
Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)
\(\rightarrow\) precision?
J. G. Liu, L. Wang, P. Zhan, PRL 126, (2021)
\(\rightarrow\) log?
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
16
Numerical problem
Cancellation of small and large factors
C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)
Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)
\(\rightarrow\) precision?
J. G. Liu, L. Wang, P. Zhan, PRL 126, (2021)
\(\rightarrow\) log?
Bad gauge
The transfer matrix is badly conditioned (e.g. not hermitian, ...)
W. Tang et al, (2024, 2025)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
16
Numerical problem
Ground-state rule
Cancellation of small and large factors
Failure to minimize simultaneously all local Hamiltonians.
B. Vanhecke, JC, et al. PRR 3, (2021)
F.F. Song, T.-Y. Lin, G. M. Zhang, PRB (2023)
C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)
Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)
\(\rightarrow\) precision?
J. G. Liu, L. Wang, P. Zhan, PRL 126, (2021)
\(\rightarrow\) log?
Bad gauge
The transfer matrix is badly conditioned (e.g. not hermitian, ...)
W. Tang et al, (2024, 2025)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
16
Numerical problem
Ground-state rule
Cancellation of small and large factors
Failure to minimize simultaneously all local Hamiltonians.
B. Vanhecke, JC, et al. PRR 3, (2021)
F.F. Song, T.-Y. Lin, G. M. Zhang, PRB (2023)
C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)
Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)
\(\rightarrow\) precision?
J. G. Liu, L. Wang, P. Zhan, PRL 126, (2021)
\(\rightarrow\) log?
Bad gauge
The transfer matrix is badly conditioned (e.g. not hermitian, ...)
W. Tang et al, (2024, 2025)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Ground state:
Kasteleyn, (1961), Fisher (1966)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
17
Ground state:
Kasteleyn, (1961), Fisher (1966)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
18
17
Ground state:
Dimer coverings!
Kasteleyn, (1961), Fisher (1966)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
17
Ground state:
Dimer coverings!
\(2 \times 2 \times 2\)
\(=0\)
Kasteleyn, (1961), Fisher (1966)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
17
Ground state:
Dimer coverings!
\(2 \times 2 \times 2\)
\(=0\)
Vanhecke, JC et al (2021)
Kasteleyn, (1961), Fisher (1966)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
17
Ground state:
Vanhecke, JC et al (2021)
Kasteleyn, (1961), Fisher (1966)
Dimer coverings!
\(2 \times 2 \times 2\)
\(=0\)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
17
\(2 \times 2 \times 2\)
Vanhecke, JC et al (2021)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
18
\(2 \times 2 \times 2\)
\(=e^{-\beta J}\)
Same structure and size
Different entries
Vanhecke, JC et al (2021)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
18
\(2 \times 2 \times 2\)
\(=e^{-\beta J}\)
Same structure and size
Different entries
Vanhecke, JC et al (2021)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
18
19
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)
J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)
L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)
Z. Luo et al. Science 363, (2019)
JC et al., PRB 104 (2021)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
19
I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)
J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)
L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)
Z. Luo et al. Science 363, (2019)
JC et al., PRB 104 (2021)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
19
I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)
J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)
L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)
Z. Luo et al. Science 363, (2019)
JC et al., PRB 104 (2021)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
19
I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)
J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)
L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)
Z. Luo et al. Science 363, (2019)
JC et al., PRB 104 (2021)
I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)
J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)
L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)
Z. Luo et al. Science 363, (2019)
JC et al., PRB 104 (2021)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
19
20
C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);
B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
Nagy et al; PRE 109 (2024)
Essential idea : Anderson bounds
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
20
C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);
B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
Nagy et al; PRE 109 (2024)
Essential idea : Anderson bounds
LINEAR PROGRAM:
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
20
C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);
B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
Nagy et al; PRE 109 (2024)
Essential idea : Anderson bounds
LINEAR PROGRAM:
1. Split with clusters that overlap
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
20
C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);
B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
Nagy et al; PRE 109 (2024)
Essential idea : Anderson bounds
LINEAR PROGRAM:
1. Split with clusters that overlap
2. Minimize : G.S. lower-bound
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
20
C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);
B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
Nagy et al; PRE 109 (2024)
Essential idea : Anderson bounds
LINEAR PROGRAM:
3. Maximize w.r.t the weights:
1. Split with clusters that overlap
2. Minimize : G.S. lower-bound
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
20
C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969); M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);
B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981); W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016);
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
Nagy et al; PRE 109 (2024)
Essential idea : Anderson bounds
LINEAR PROGRAM:
3. Maximize w.r.t the weights:
1. Split with clusters that overlap
2. Minimize : G.S. lower-bound
Obtain the ground states by tiling!
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
21
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)
J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
21
I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)
J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
21
JC, B. Vanhecke et. al., PRB 106 (2022)
I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)
J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
21
JC, B. Vanhecke et. al., PRB 106 (2022)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
22
A. Rufino, S. Nyckees, JC, F. Mila, arXiv:2505.05889 (2025)
An infinite series of plateaus
in the ratios of densities of 2 types of system-spanning strings
23
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Tensor network methods
"Classical" and quantum frustrated magnetism
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Consequences for studying 2D quantum many-body problems ?
Dealing with non-local constraints ?
Combining with Monte Carlo methods?
Wei Tang et al (2024, 2025)
Châtelain & Gendiar (2020)
Frias-Perez et al (2023)
Tensor network methods
"Classical" and quantum frustrated magnetism
23
Consequences for studying 2D quantum many-body problems ?
Dealing with non-local constraints ?
Range of frustration: hard versus "weak" frustration ?
Combining with Monte Carlo methods?
Wei Tang et al (2024, 2025)
Châtelain & Gendiar (2020)
Frias-Perez et al (2023)
Ronceray & Le Floch (2020)
Interpretation of "classical" entanglement ?
Carignano et al (2024)
Tensor network methods
"Classical" and quantum frustrated magnetism
A route to quantum-classical correspondences?
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Allegra et al (2016)
23
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Tensor networks:
a way to capture complex behavior in statistical mechanics
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Tensor networks:
a way to capture complex behavior in statistical mechanics
Constrained models in statistical mechanics shed light
on tensor network methods (and challenges)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Tensor networks:
a way to capture complex behavior in statistical mechanics
Constrained models in statistical mechanics shed light
on tensor network methods (and challenges)
COLBOIS|TNS FOR CLASSICAL FRUSTRATED MAGNETISM | 10.2025
Wikipedia, CC BY license
Julia Yeomans
\(M\)
\(U\)
\(S\)
\(V\)
\(=\)
Wikipedia, CC BY license
\(M\)
\(U\)
\(S\)
\(V\)
\(=\)
Wikipedia, CC BY license
\(M\)
\(U\)
\(S\)
\(V\)
\(=\)
Wikipedia, CC BY license
\(M\)
\(U\)
\(S\)
\(V\)
\(=\)
Wikipedia, CC BY license
\(M\)
\(U\)
\(S\)
\(V\)
\(=\)
Wikipedia, CC BY license
\(M\)
\(U\)
\(S\)
\(V\)
\(=\)
Wikipedia, CC BY license
\(\chi = 4\)
\(M\)
\(U\)
\(S\)
\(V\)
\(=\)
Wikipedia, CC BY license
\(\chi = 4\)
\(\chi = 20\)
\(M\)
\(U\)
\(S\)
\(V\)
\(=\)
Wikipedia, CC BY license
\(\chi = 4\)
\(\chi = 20\)
\(\chi = 100\)
\(M\)
\(U\)
\(S\)
\(V\)
\(=\)
Wikipedia, CC BY license
\(\chi = 4\)
\(\chi = 20\)
\(\chi = 100\)
\(M\)
\(U\)
\(S\)
\(V\)
\(=\)
Wikipedia, CC BY license
\(\chi = 4\)
\(\chi = 20\)
\(\chi = 100\)
By Jeanne Colbois
Invited talk at CPTGA workshop
Physicist @ CNRS. Here you find slides for *some* of my presentations, as well as visual abstracts for recent publications.