Jeanne Colbois - Institut Néel - Grenoble
Quantum 2025 | Grenoble | 21 May 2025
Nicolas Laflorencie
Fabien Alet
LPT Toulouse - France
(?)
Anderson insulator
disorder \(h \)
?
?
Ergodic
Many-body localized
Interactions \(\Delta\)
Jeanne Colbois - Institut Néel - Grenoble
Quantum 2025 | Grenoble | 21 May 2025
Nicolas Laflorencie
Fabien Alet
LPT Toulouse - France
(?)
Anderson insulator
disorder \(h \)
?
?
Ergodic
Many-body localized
Interactions \(\Delta\)
Jeanne Colbois - Institut Néel - Grenoble
Quantum 2025 | Grenoble | 21 May 2025
Nicolas Laflorencie
Fabien Alet
LPT Toulouse - France
(?)
Anderson insulator
disorder \(h \)
?
?
Ergodic
Many-body localized
Interactions \(\Delta\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
1
Anderson, Phys. Rev. 109, 1492 (1958)
Mott & Twose, Advances in Physics 10, 107 (1961)
COLBOIS | INSTABILITIES AND MBL | 05.2025
1
\(|\psi(x)|^2\)
\(\xi(h, E)\)
\(h\)
\(\forall h , \, \forall E \) : localization !!
(1D, NN)
\(-h\)
\(h\)
Anderson, Phys. Rev. 109, 1492 (1958)
Mott & Twose, Advances in Physics 10, 107 (1961)
COLBOIS | INSTABILITIES AND MBL | 05.2025
1
\(|\psi(x)|^2\)
\(\xi(h, E)\)
\(h\)
\(\forall h , \, \forall E \) : localization !!
(1D, NN)
\(-h\)
\(h\)
\(|\psi(x)|^2\)
several non-interacting fermions :
Anderson, Phys. Rev. 109, 1492 (1958)
Mott & Twose, Advances in Physics 10, 107 (1961)
COLBOIS | INSTABILITIES AND MBL | 05.2025
1
\(|\psi(x)|^2\)
\(\xi(h, E)\)
\(h\)
\(\forall h , \, \forall E \) : localization !!
(1D, NN)
\(-h\)
\(h\)
\(|\psi(x)|^2\)
several non-interacting fermions :
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(-h\)
\(h\)
2
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(-h\)
\(h\)
Attraction / repulsion
2
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(-h\)
\(h\)
Attraction / repulsion
Jordan-Wigner
2
\(n_i = S_i^z + 1/2\)
P. Jordan and E. Wigner, Z. Physik 47, 631–651 (1928)
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(-h\)
\(h\)
Attraction / repulsion
Jordan-Wigner
Spin-flip
2
\(n_i = S_i^z + 1/2\)
P. Jordan and E. Wigner, Z. Physik 47, 631–651 (1928)
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(-h\)
\(h\)
Attraction / repulsion
Jordan-Wigner
ISING INTERACTION
Spin-flip
2
\(n_i = S_i^z + 1/2\)
P. Jordan and E. Wigner, Z. Physik 47, 631–651 (1928)
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(-h\)
\(h\)
Attraction / repulsion
Jordan-Wigner
2
\(n_i = S_i^z + 1/2\)
ISING INTERACTION
Spin-flip
P. Jordan and E. Wigner, Z. Physik 47, 631–651 (1928)
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(-h\)
\(h\)
Attraction / repulsion
Jordan-Wigner
\(L/2\) fermions
Charge is conserved
\(\sum_i S_i^{z} = 0\)
Magnetization is conserved
2
\(n_i = S_i^z + 1/2\)
ISING INTERACTION
Spin-flip
P. Jordan and E. Wigner, Z. Physik 47, 631–651 (1928)
COLBOIS | INSTABILITIES AND MBL | 05.2025
ISING INTERACTION
3
Spin-flip
COLBOIS | INSTABILITIES AND MBL | 05.2025
ISING INTERACTION
Spin-flip
4
\(\epsilon = 1\)
\(\epsilon = 0\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
ISING INTERACTION
Spin-flip
4
\(\epsilon = 1\)
\(\epsilon = 0\)
Ground state, \(\epsilon = 0\)
Ising interaction \(\Delta\)
Localized
Delocalized
disorder \(h \)
Giamarchi & Schulz EPL 3 (1987); PRB 37, (1988);
Ristivojevic, et al PRL 109, (2012);
Doggen et al, PRB 96, (2017);
Lin et al, Scipost Phys 4 (2019)
COLBOIS | INSTABILITIES AND MBL | 05.2025
ISING INTERACTION
Spin-flip
4
\(\epsilon = 1\)
\(\epsilon = 0\)
Ground state, \(\epsilon = 0\)
Ising interaction \(\Delta\)
Localized
Delocalized
disorder \(h \)
Giamarchi & Schulz EPL 3 (1987); PRB 37, (1988);
Ristivojevic, et al PRL 109, (2012);
Doggen et al, PRB 96, (2017);
Lin et al, Scipost Phys 4 (2019)
Counter example for thermalization of isolated quantum systems
COLBOIS | INSTABILITIES AND MBL | 05.2025
ISING INTERACTION
Spin-flip
4
\(\epsilon = 1\)
\(\epsilon = 0\)
Ground state, \(\epsilon = 0\)
Ising interaction \(\Delta\)
Localized
Delocalized
disorder \(h \)
Giamarchi & Schulz EPL 3 (1987); PRB 37, (1988);
Ristivojevic, et al PRL 109, (2012);
Doggen et al, PRB 96, (2017);
Lin et al, Scipost Phys 4 (2019)
Counter example for thermalization of isolated quantum systems
Polynomial \(\rightarrow\) Exponential
Absence of translation invariance
No typicality methods
No ground-state methods
COLBOIS | INSTABILITIES AND MBL | 05.2025
ISING INTERACTION
Spin-flip
4
\(\epsilon = 1\)
\(\epsilon = 0\)
Ground state, \(\epsilon = 0\)
Ising interaction \(\Delta\)
Localized
Delocalized
disorder \(h \)
Giamarchi & Schulz EPL 3 (1987); PRB 37, (1988);
Ristivojevic, et al PRL 109, (2012);
Doggen et al, PRB 96, (2017);
Lin et al, Scipost Phys 4 (2019)
Counter example for thermalization of isolated quantum systems
COLBOIS | INSTABILITIES AND MBL | 05.2025
ISING INTERACTION
Spin-flip
4
\(\epsilon = 1\)
\(\epsilon = 0\)
Ground state, \(\epsilon = 0\)
Ising interaction \(\Delta\)
Localized
Delocalized
disorder \(h \)
Giamarchi & Schulz EPL 3 (1987); PRB 37, (1988);
Ristivojevic, et al PRL 109, (2012);
Doggen et al, PRB 96, (2017);
Lin et al, Scipost Phys 4 (2019)
Counter example for thermalization of isolated quantum systems
High energy, \( \epsilon = 0.5\)
Ising interaction \(\Delta\)
Delocalized
Delocalized
disorder \(h \)
MBL
MBL
.... and a whole field! ....
Fleischman, Anderson, (1980); Altschuler, et al (1997); Gornyi et al (2005); Basko et al (2006); Zidnarick et al (2008); Aleiner et al (2010); Pal and Huse (2010); Luitz et al (2015) [....]
Localization can survive!
COLBOIS | INSTABILITIES AND MBL | 05.2025
ISING INTERACTION
Spin-flip
4
\(\epsilon = 1\)
\(\epsilon = 0\)
Ground state, \(\epsilon = 0\)
Ising interaction \(\Delta\)
Localized
Delocalized
disorder \(h \)
Counter example for thermalization of isolated quantum systems
High energy, \( \epsilon = 0.5\)
Ising interaction \(\Delta\)
Delocalized
Delocalized
disorder \(h \)
MBL
MBL
.... and a whole field! ....
Fleischman, Anderson, (1980); Altschuler, et al (1997); Gornyi et al (2005); Basko et al (2006); Zidnarick et al (2008); Aleiner et al (2010); Pal and Huse (2010); Luitz et al (2015) [....]
?
Giamarchi & Schulz EPL 3 (1987); PRB 37, (1988);
Ristivojevic, et al PRL 109, (2012);
Doggen et al, PRB 96, (2017);
Lin et al, Scipost Phys 4 (2019)
Localization can survive!
(?)
Anderson insulator
disorder \(h \)
?
?
Ergodic
Many-body localized
Interactions \(\Delta\)
(?)
Anderson insulator
disorder \(h \)
?
?
Ergodic
Many-body localized
Interactions \(\Delta\)
MBL in one slide
MBL in one slide
A simple argument : ergodic instability
(?)
Anderson insulator
disorder \(h \)
Ergodic
Many-body localized
Interactions \(\Delta\)
!
MBL in one slide
A simple argument : ergodic instability
Numerical results
(?)
Anderson insulator
disorder \(h \)
Ergodic
Many-body localized
Interactions \(\Delta\)
!
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
5
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
5
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
5
Ergodic delocalized
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
5
Ergodic delocalized
Many-body localized
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
5
Spectral statistics
Ergodic delocalized
Many-body localized
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
5
Spectral statistics
\(r\)
\(P(r)\)
Ergodic delocalized
Many-body localized
Ergodic thermalization hypothesis
Random matrix theory
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
5
Spectral statistics
\(r\)
\(P(r)\)
\(P(r)\)
\(r\)
Ergodic delocalized
Many-body localized
Ergodic thermalization hypothesis
Random matrix theory
Emergent integrability
"Localization length" \(\zeta\)
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
5
Spectral statistics
Entanglement entropy
...
A
\(r\)
\(P(r)\)
\(P(r)\)
\(r\)
Ergodic delocalized
Many-body localized
Ergodic thermalization hypothesis
Random matrix theory
Emergent integrability
"Localization length" \(\zeta\)
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
5
Spectral statistics
Entanglement entropy
...
A
\(r\)
\(P(r)\)
\(P(r)\)
\(r\)
Ergodic delocalized
Many-body localized
\(L/2\)
\(S/L\)
Ergodic thermalization hypothesis
Random matrix theory
Emergent integrability
"Localization length" \(\zeta\)
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
5
Spectral statistics
Entanglement entropy
...
A
\(r\)
\(P(r)\)
\(P(r)\)
\(r\)
\(L/2\)
\(S/L\)
\(L/2\)
\(S/L\)
Ergodic delocalized
Many-body localized
Ergodic thermalization hypothesis
Random matrix theory
Emergent integrability
"Localization length" \(\zeta\)
Runaway instability induced by rare regions of weak disorder
COLBOIS | INSTABILITIES AND MBL | 05.2025
De Roeck & Huveneers (2017), Luitz, De Roeck & Huveneers (2017),
Thiery et al (2018); Crowley and Chandran (2020), Crowley and Chandran (2022)
3
3
6
Runaway instability induced by rare regions of weak disorder
COLBOIS | INSTABILITIES AND MBL | 05.2025
De Roeck & Huveneers (2017), Luitz, De Roeck & Huveneers (2017),
Thiery et al (2018); Crowley and Chandran (2020), Crowley and Chandran (2022)
3
3
6
Adapted from Szoldra et at (2024)
\(n_0\)
Runaway instability induced by rare regions of weak disorder
COLBOIS | INSTABILITIES AND MBL | 05.2025
De Roeck & Huveneers (2017), Luitz, De Roeck & Huveneers (2017),
Thiery et al (2018); Crowley and Chandran (2020), Crowley and Chandran (2022)
Adapted from Szoldra et at (2024)
3
3
6
thermal "bubble" with level spacing \(\delta \sim 2^{-n_0}\)
\(n_0\)
Runaway instability induced by rare regions of weak disorder
\(\Gamma \sim e^{-r/\zeta}\)
thermal "bubble" with level spacing \(\delta \sim 2^{-n_0}\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
De Roeck & Huveneers (2017), Luitz, De Roeck & Huveneers (2017),
Thiery et al (2018); Crowley and Chandran (2020), Crowley and Chandran (2022)
Adapted from Szoldra et at (2024)
3
3
6
\(n_0\)
Runaway instability induced by rare regions of weak disorder
\(\Gamma \sim e^{-r/\zeta}\)
thermal "bubble" with level spacing \(\delta \sim 2^{-n_0}\)
Spin relaxes if the interaction does not resolve the spectral gap of the grain
\(\zeta > \zeta_c\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
De Roeck & Huveneers (2017), Luitz, De Roeck & Huveneers (2017),
Thiery et al (2018); Crowley and Chandran (2020), Crowley and Chandran (2022)
Adapted from Szoldra et at (2024)
3
3
6
3
3
7
COLBOIS | INSTABILITIES AND MBL | 05.2025
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
7
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(\epsilon\)
\(\epsilon_{\rm sp}\)
Colbois and Laflorencie (2023), Crowley and Chandran (2020)
3
3
7
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(\epsilon\)
\(\epsilon_{\rm sp}\)
Colbois and Laflorencie (2023), Crowley and Chandran (2020)
\(h/J\)
\(h/J \gg 1 \)
\(\xi_{\mathrm{MBA}} \ll L \)
\(\Rightarrow\)
3
3
7
\(h\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Crowley and Chandran (2020), Colbois and Laflorencie (2023)
3
3
8
2. The localization length tends to increase with the presence of interactions
\(h\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Crowley and Chandran (2020), Colbois and Laflorencie (2023)
3
3
8
2. The localization length tends to increase with the presence of interactions
\(h\)
\(h^{\star}\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Crowley and Chandran (2020), Colbois and Laflorencie (2023)
3
3
8
2. The localization length tends to increase with the presence of interactions
\(h\)
High energy, \( \epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
!
\(h^{\star}\)
\(h^{\star}\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Crowley and Chandran (2020), Colbois and Laflorencie (2023)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
8
2. The localization length tends to increase with the presence of interactions
\(h\)
High energy, \( \epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
!
\(h^{\star}\)
\(h^{\star}\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
Crowley and Chandran (2020), Colbois and Laflorencie (2023)
3
3
8
2. The localization length tends to increase with the presence of interactions
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
COLBOIS | INSTABILITIES AND MBL | 05.2025
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
3
3
9
COLBOIS | INSTABILITIES AND MBL | 05.2025
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
9
A
KL divergence
COLBOIS | INSTABILITIES AND MBL | 05.2025
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
9
\(P(r)\)
\(r\)
A
KL divergence
COLBOIS | INSTABILITIES AND MBL | 05.2025
Kullback-Leibler divergence :
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
9
\(P(r)\)
\(r\)
A
KL divergence
COLBOIS | INSTABILITIES AND MBL | 05.2025
Delocalized at strong enough interactions
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
9
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
Kullback-Leibler divergence :
\(P(r)\)
\(r\)
A
Delocalized at strong enough interactions
KL divergence
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
9
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
Kullback-Leibler divergence :
\(P(r)\)
\(r\)
A
Delocalized at strong enough interactions
KL divergence
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
10
Delocalized at strong enough interactions
KL divergence
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
10
Delocalized at strong enough interactions
KL divergence
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
10
Delocalized at strong enough interactions
KL divergence
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
10
Delocalized at strong enough interactions
KL divergence
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
10
(See also LeBlond et al., PRB 104 L201117 (2021), @ h = 0.5; Crowley and Chandran 2020 )
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
\(\Delta/J\)
\(h/J \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
11
\(\Delta/J\)
\(h/J \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
(See also LeBlond et al., PRB 104 L201117 (2021), @ h = 0.5; Crowley and Chandran 2020 )
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
11
\(\Delta/J\)
\(h/J \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
(See also LeBlond et al., PRB 104 L201117 (2021), @ h = 0.5; Crowley and Chandran 2020 )
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
11
\(\Delta/J\)
\(h/J \)
COLBOIS | INSTABILITIES AND MBL | 05.2025
(See also LeBlond et al., PRB 104 L201117 (2021), @ h = 0.5; Crowley and Chandran 2020 )
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
3
3
11
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
12
1) Ergodic instability
Below \(h^{\star} \sim 2-3\), the Anderson insulator immediately turns ergodic for \(\Delta > 0\)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
12
1) Ergodic instability
Below \(h^{\star} \sim 2-3\), the Anderson insulator immediately turns ergodic for \(\Delta > 0\)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
2) Extrapolated transition
Standard estimates lead to an extrapolated transition line \(h_c(\Delta)\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
12
1) Ergodic instability
Below \(h^{\star} \sim 2-3\), the Anderson insulator immediately turns ergodic for \(\Delta > 0\)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
2) Extrapolated transition
Standard estimates lead to an extrapolated transition line \(h_c(\Delta)\)
JC, F. Alet, N. Laflorencie, PRB 110, (2024)
N. Laflorencie, JC, F. Alet, arXiv (2025)
3) Advertisement :
Further crucial insight from the point of view of two-point correlation functions
COLBOIS | INSTABILITIES AND MBL | 05.2025
3
3
12
1) Ergodic instability
Below \(h^{\star} \sim 2-3\), the Anderson insulator immediately turns ergodic for \(\Delta > 0\)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
2) Extrapolated transition
Standard estimates lead to an extrapolated transition line \(h_c(\Delta)\)
3) Advertisement :
Further crucial insight from the point of view of two-point correlation functions
JC, F. Alet, N. Laflorencie, PRB 110, (2024)
N. Laflorencie, JC, F. Alet, arXiv (2025)
Interactions give rise to MBL
(unbounded Hamiltonians)
\(\Delta\)
\(\Delta_c\)
D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Rev. Mod. Phys. 91, 021001 (2019)
Lin et al, Scipost (2018)
LeBlond et al. (2021)
Hopjan, Orso, Heidrich-Meisner (2021)
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
(for standard observables)
COLBOIS | INSTABILITIES AND MBL | 05.2025
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
GOE = Ergodic
Poisson = localized
Probes:
Gap ratio:
P. Jacquod, D. L. Shepelyansky, PRL 79, 1837 (1997) [... a lot of works ...]
O. Giraud, N. Macé, E. Vernier, F. Alet, PRX 12, 011006 (2022)
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
Area-law at strong disorder
Volume-law at weak disorder
COLBOIS | INSTABILITIES AND MBL | 05.2025
Probes:
Khemani et al, PRX 7 (2017)
Disorder \(h\)
\(S_T = (L-\log_2(e))/2\)
\(S = -\mathrm{Tr} \rho_A \ln \rho_A\)
A
Localized
Delocalized
It depends
\(|C^{\alpha,\alpha}_{r} |= A e^{-r /\xi_{\alpha}}\)
\(C_{ij}^{zz} \rightarrow \langle n_i n_{j} \rangle - \langle n_i \rangle \langle n_{j} \rangle\)
From spin to bosons : \(n_i = S_i^{z} + 1/2\)
Density-density correlations
Main theoretical works*:
Aubry-André model
Pal & Huse, PRB (2010)
Lim, Sheng, PRB (2016)
Localization lengths are short in MBL
Varma et al., PRB (2019)
Character of short-range distributions
Colmenarez et al, SciPost (2019)
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
e.g. : Herviou et al (2019), Hemery et al (2022),Weiner et al (2019), Morningstar et al (2022)
*Other works focus on QMI / on weaker disorders / on time evolution
Lukin et al, Science (2019)
Correlations as a probe of the transition...
Localized
Delocalized
It depends
\(|C^{\alpha,\alpha}_{r} |= A e^{-r /\xi_{\alpha}}\)
\(C_{ij}^{zz} \rightarrow \langle n_i n_{j} \rangle - \langle n_i \rangle \langle n_{j} \rangle\)
From spin to bosons : \(n_i = S_i^{z} + 1/2\)
Density-density correlations
Main theoretical works*:
Aubry-André model
Pal & Huse, PRB (2010)
Lim, Sheng, PRB (2016)
Localization lengths are short in MBL
Varma et al., PRB (2019)
Character of short-range distributions
Colmenarez et al, SciPost (2019)
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
e.g. : Herviou et al (2019), Hemery et al (2022),Weiner et al (2019), Morningstar et al (2022)
*Other works focus on QMI / on weaker disorders / on time evolution
Lukin et al, Science (2019)
Correlations as a probe of the transition...
COLBOIS | INSTABILITIES AND MBL | 05.2025
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
\(\xi_x \approx 2 \xi_z\) : XX correlations dominate
Random vector
Total spin conservation
Random state : XX
\(\ket{R} = \sum_{s= 1}^{\mathcal{N}} a_s \ket{s}\), \(\ket{s} = \ket{\uparrow, \downarrow, \dots}\),\( |a_s|^2\propto\frac{1}{\mathcal{N}}\)
finite \(\xi_x\)
Power-law
ZZ correlations dominate
\(\bra{R} S_i^{+} S_j^{-} \ket{R}\)
\(= \sum_{s} a_s a_{\mathrm{flip}(s)}\) \(\propto \frac{ \sqrt{\mathcal{N}}}{\mathcal{N}}\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
COLBOIS | INSTABILITIES AND MBL | 05.2025
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(\Delta/J\)
\(h/J \)
\(\Delta/J\)
\(h/J \)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
COLBOIS | INSTABILITIES AND MBL | 05.2025
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024) & PRB 110, (2024)
COLBOIS | INSTABILITIES AND MBL | 05.2025
N. Laflorencie, JC, F. Alet, arXiv (2025)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Serbyn, Papic, Abanin (2013) ; Bauer, Nayak (2014) ; Huse, Nandkishore, Oganesyan (2014)
Reviews : Imbrie, Ros, Scardicchio (2017) Rademarker, Ortuno, Somoza (2017)
- out of equilibrium dynamics
M. Schreiber et al. Science (2015)
- log-growth of EE
J. H. Bardarson et al, PRL 109, 017202 (2012)
M. Znidaric et al PRB 77, 064426 (2008)
- analytical arguments / proof(s)
Nature / behavior of the transition ?
- Basko, Aleiner, Altschuler (2006), Ros, Müller (2017), Crowley, Chandran (2022),
- Imbrie (2016), ...
When MBL : \(J_{i,...,j} \propto e^{-\frac{-|i-j|}{\zeta}}\)
AL : Anderson orbitals
\(L\) conserved quantities
Interacting model
Strong finite-size effects
Ultraslow dynamics
Theory of instabilities
Suntajs et al, PRE (2020)
Suntajs et al, PRB (2020)
Panda et al EPL (2019)
Abanin et al (2021)
Sels, Polkovnikov (2021)
LeBlond et al (2021)
Sierant & Zakrewski PRB (2022)
Morningstar et al (2022)
Evers, Modak, Bera (2023)
Long et al (2023)
Ha et al (2023)
Weisse, Gerstner, Sierker (2024)
...
COLBOIS | INSTABILITIES AND MBL | 05.2025
Gap Ratio
Sierant, Lewenstein, Zakrewski PRL (2020)
Challenging finite-size scaling
Disorder \(h\)
Disorder \(h\)
\(h/L\)
\(h\)
Entanglement entropy
& other probes
JC, F. Alet, N. Laflorencie, PRL (2024)
Suntajs et al (2020)
(arXiv v1-v2)
COLBOIS | INSTABILITIES AND MBL | 05.2025
High energy, \(\epsilon = 0.5\)
Ising interaction \(\Delta\)
MBL
Delocalized
disorder \(h \)
Hints in several works but extremely challenging to characterize
Jacobi method
Demixing
QMI
Fictitious evolution
\(r\)
\(r\)
Phenomenological models
Relation to avalanches
Kjäll (2018)
Colmenarez et al (2019)
Villalonga and Clark (2020)
\(\pm\)
Crowley and Chandran (2020)
Garatt et al (2021)
Crowley and Chandran (2022)
Long et al (2023)
Ha, Morningstar and Huse (2023)
Morningstar et al (2022)
Perturb away from very strong disorder
Gopalakrishnan et al (2015)
Another possible mechanism for instabilities:
resonances between more localized many-body states
Gopalakrishnan et al (2015)
Villalonga and Clark (2020)
Garratt et al (2021)
Crowley and Chandran (2022)
Morningstar et al (2022)
COLBOIS | INSTABILITIES AND MBL | 05.2025
\(L \rightarrow \infty\)
Kiefer-Emmanouilidis et al (2020), Suntajs et al (2020), Sels, Polkovnikov (2021), Wiesse et al (2024),...
Evers et al (2023),Long (2023)...
JC, Alet, Laflorencie (2024), Laflorencie et al (2025)
Sierant et al(2020), Morningstar et al, (2022) , Crowley, Chandran (2022), Szoldra et al (2024), Nieda et al (2024), Scoquart et al (2025)....
Weiner et al (2019), Sierant, Zakrewski (2022),
Biroli et al (2024)
Morningstar et al, PRB 105 (2022)
avalanche instability
many-body resonances
here - end to end QMI
gap ratio
and minimum gap
Absence of MBL phase
Single transition from ergodic to MBL (potentially very large \(h_c\))
Intermediate phase (nature differs depending on the paper)
h
h
h
Anderson
No growth
of entanglement
J. H. Bardarson, F. Pollmann, and J. E. Moore, PRL 109, 017202 (2012)
M. Znidaric, T. Prosen, and P. Prelovsek PRB 77, 064426 (2008)
Log growth
of entanglement
Initial \(S^z\) basis random product state
+
TEBD
W = 5
D. Luitz, N. Laflorencie, F. Alet (2016)
Sierant and Zakrewski (2022)
Some eigenstate
J. C., N. Laflorencie, PRB (2023)
\(|\langle S_i^{z}\rangle| < 1/2\)
Anderson chain / XX chain
Dupont, Macé, Laflorencie, PRB 100, 134201, (2019)
Laflorencie, Lemarié, Macé, PRR 2, 042033(R), (2020)
JC, Laflorencie, PRB 108, 144206 (2023)
Toy model:
SPIN FREEZING !
CHAIN BREAKING !
Macé et al (2019)
Colbois, Alet, Laflorencie (2024)
COLBOIS | INSTABILITIES AND MBL | 05.2025
Model : t-V with usual XXZ units, except V = 2t
COLBOIS | INSTABILITIES AND MBL | 05.2025