Anderson insulator
disorder \(h \)
Interaction \(\Delta\)
Ergodic
Many-body localized (?)
Jeanne Colbois | Institut Néel | QuantAlps days 2025
?
Nicolas Laflorencie
Ashirbad Padhan
Fabien Alet
1
Anderson, Phys. Rev. 109, 1492 (1958)
Mott & Twose, Advances in Physics 10, 107 (1961)
Conserves \(N_f\)
1
Anderson, Phys. Rev. 109, 1492 (1958)
Mott & Twose, Advances in Physics 10, 107 (1961)
Conserves \(N_f\)
1
\(|\psi(x)|^2\)
Anderson, Phys. Rev. 109, 1492 (1958)
Mott & Twose, Advances in Physics 10, 107 (1961)
\(|\psi(x)|^2\)
Conserves \(N_f\)
1
\(h\)
\(-h\)
\(h\)
Anderson, Phys. Rev. 109, 1492 (1958)
Mott & Twose, Advances in Physics 10, 107 (1961)
\(|\psi(x)|^2\)
\(\forall h , \, \forall E \) : localization
(1D, NN)
\(h\)
\(-h\)
\(h\)
\(|\psi(x)|^2\)
\(\xi(h, E)\)
Conserves \(N_f\)
1
Anderson, Phys. Rev. 109, 1492 (1958)
Mott & Twose, Advances in Physics 10, 107 (1961)
\(|\psi(x)|^2\)
\(\forall h , \, \forall E \) : localization
(1D, NN)
\(h\)
\(-h\)
\(h\)
\(|\psi(x)|^2\)
\(\xi(h, E)\)
Conserves \(N_f\)
1
Anderson, Phys. Rev. 109, 1492 (1958)
Mott & Twose, Advances in Physics 10, 107 (1961)
\(|\psi(x)|^2\)
\(\forall h , \, \forall E \) : localization
(1D, NN)
\(h\)
\(-h\)
\(h\)
\(|\psi(x)|^2\)
\(\xi(h, E)\)
Conserves \(N_f\)
1
Anderson insulator
disorder \(h \)
2
Anderson insulator
disorder \(h \)
Interaction \(\Delta\)
2
Anderson insulator
disorder \(h \)
Interaction \(\Delta\)
Is the many-body wavefunction still "localized"?
Absence of transport
Absence of thermalization
in some isolated quantum-many body systems
3
\(-h\)
\(h\)
3
\(-h\)
\(h\)
Attraction / repulsion
3
\(-h\)
\(h\)
Attraction / repulsion
Jordan-Wigner
non-local transformation
\(n_i = S_i^z + 1/2\)
3
\(-h\)
\(h\)
Attraction / repulsion
Jordan-Wigner
non-local transformation
\(n_i = S_i^z + 1/2\)
Spin-flip
3
\(-h\)
\(h\)
Attraction / repulsion
Jordan-Wigner
non-local transformation
\(n_i = S_i^z + 1/2\)
ISING INTERACTION
Spin-flip
3
\(-h\)
\(h\)
Attraction / repulsion
ISING INTERACTION
Spin-flip
Jordan-Wigner
non-local transformation
\(n_i = S_i^z + 1/2\)
3
\(-h\)
\(h\)
Attraction / repulsion
\(n_i = S_i^z + 1/2\)
ISING INTERACTION
Spin-flip
\(L/2\) fermions
Charge is conserved
\(\sum_i S_i^{z} = 0\)
Magnetization is conserved
Jordan-Wigner
non-local transformation
4
1. From Anderson to many-body localization
2. Instabilities of many-body localization
On a spin chain:
3. Strong, long-range correlations deep in the MBL regime
1. From one to many fermions
2. Adding interactions
Conserves \(N_f\)
5
Anderson, Phys. Rev. 109, 1492 (1958)
Mott & Twose, Advances in Physics 10, 107 (1961)
Conserves \(N_f\)
Slater determinant based on localized wavefunctions
5
Anderson, Phys. Rev. 109, 1492 (1958)
Mott & Twose, Advances in Physics 10, 107 (1961)
Conserves \(N_f\)
\(\xi(h, E)\)
Slater determinant based on localized wavefunctions
5
Anderson, Phys. Rev. 109, 1492 (1958)
Mott & Twose, Advances in Physics 10, 107 (1961)
\(\epsilon\)
\(\xi(\epsilon, W)\)
6
Colbois and Laflorencie (2023)
See also Müller & Delande review
\(\epsilon\)
\(\xi(\epsilon, W)\)
6
Colbois and Laflorencie (2023)
See also Müller & Delande review
\(\epsilon\)
\(\xi(\epsilon, W)\)
6
Colbois and Laflorencie (2023)
See also Müller & Delande review
\(h\)
\(\epsilon\)
\(\xi(\epsilon, W)\)
6
Colbois and Laflorencie (2023)
See also Müller & Delande review
\(h\)
\(\epsilon\)
\(\xi(\epsilon, W)\)
6
Colbois and Laflorencie (2023)
See also Müller & Delande review
\(h\)
7
\(\epsilon= 1\)
7
\(\epsilon = 0\)
\(\epsilon= 1\)
Giamarchi & Schulz EPL 3 (1987); PRB 37, (1988);
(and many more....)
Ground state, \(\epsilon = 0\)
Interaction \(\Delta\)
Localized
Delocalized
disorder \(h \)
7
\(\epsilon = 0\)
\(\epsilon= 1\)
Giamarchi & Schulz EPL 3 (1987); PRB 37, (1988);
(and many more....)
Ground state, \(\epsilon = 0\)
Interaction \(\Delta\)
Localized
Delocalized
disorder \(h \)
7
\(\epsilon = 0\)
\(\epsilon= 1\)
Giamarchi & Schulz EPL 3 (1987); PRB 37, (1988);
(and many more....)
Ground state, \(\epsilon = 0\)
Interaction \(\Delta\)
Localized
Delocalized
disorder \(h \)
Polynomial \(\rightarrow\) Exponential
Absence of translation invariance
No typicality methods
No ground-state methods
24 sites
7
\(\epsilon = 0\)
\(\epsilon= 1\)
Giamarchi & Schulz EPL 3 (1987); PRB 37, (1988);
(and many more....)
Ground state, \(\epsilon = 0\)
Interaction \(\Delta\)
Localized
Delocalized
disorder \(h \)
Polynomial \(\rightarrow\) Exponential
Absence of translation invariance
No typicality methods
No ground-state methods
24 sites
7
\(\epsilon = 0\)
\(\epsilon= 1\)
Giamarchi & Schulz EPL 3 (1987); PRB 37, (1988);
(and many more....)
Ground state, \(\epsilon = 0\)
Interaction \(\Delta\)
Localized
Delocalized
disorder \(h \)
High energy, \( \epsilon = 0.5\)
Interaction \(\Delta\)
Delocalized
Delocalized
disorder \(h \)
MBL
MBL
Fleischman, Anderson, (1980); Altschuler, et al (1997); Gornyi et al (2005);
Basko et al (2006); Pal and Huse (2010); Luitz et al (2015) [...and a whole field!...]
Localization can survive!
8
Ergodic delocalized
Many-body localized
Entanglement entropy
A
Review: D'Alessio et al. Adv. Phys. (2016)
Serbyn, Papic, Abanin (2013) ; Bauer, Nayak (2014) ;
Huse, Nandkishore, Oganesyan (2014)
Reviews : Imbrie, Ros, Scardicchio (2017) Rademarker, Ortuno, Somoza (2017)
8
\(L/2\)
\(S\)
Ergodic delocalized
Many-body localized
Entanglement entropy
A
Review: D'Alessio et al. Adv. Phys. (2016)
Serbyn, Papic, Abanin (2013) ; Bauer, Nayak (2014) ;
Huse, Nandkishore, Oganesyan (2014)
Reviews : Imbrie, Ros, Scardicchio (2017) Rademarker, Ortuno, Somoza (2017)
8
Ergodic delocalized
Many-body localized
Entanglement entropy
A
Review: D'Alessio et al. Adv. Phys. (2016)
Serbyn, Papic, Abanin (2013) ; Bauer, Nayak (2014) ;
Huse, Nandkishore, Oganesyan (2014)
Reviews : Imbrie, Ros, Scardicchio (2017) Rademarker, Ortuno, Somoza (2017)
\(L/2\)
\(S\)
\(L/2\)
\(S\)
8
\(L/2\)
\(S\)
Ergodic delocalized
Many-body localized
Eigenstates are thermal
Entanglement entropy
A
Review: D'Alessio et al. Adv. Phys. (2016)
Eigenstate thermalization hypothesis
Random matrix theory
Serbyn, Papic, Abanin (2013) ; Bauer, Nayak (2014) ;
Huse, Nandkishore, Oganesyan (2014)
Reviews : Imbrie, Ros, Scardicchio (2017) Rademarker, Ortuno, Somoza (2017)
\(L/2\)
\(S\)
8
Ergodic delocalized
Many-body localized
Eigenstates are thermal
Entanglement entropy
A
Review: D'Alessio et al. Adv. Phys. (2016)
Eigenstates are like ground states
Extensive number of quasi-local
conserved quantities
Eigenstate thermalization hypothesis
Random matrix theory
Serbyn, Papic, Abanin (2013) ; Bauer, Nayak (2014) ;
Huse, Nandkishore, Oganesyan (2014)
Reviews : Imbrie, Ros, Scardicchio (2017) Rademarker, Ortuno, Somoza (2017)
\(L/2\)
\(S\)
\(L/2\)
\(S\)
9
Predicts the eigenstates properties
Serbyn, Papic, Abanin (2013); Bauer, Nayak (2014); Huse, Nandkishore, Oganesyan (2014)
9
Captures out-of-equilibrium dynamics
Predicts the eigenstates properties
M. Schreiber et al. Science (2015)
Serbyn, Papic, Abanin (2013); Bauer, Nayak (2014); Huse, Nandkishore, Oganesyan (2014)
9
Supports analytical arguments / proofs
Ros, Müller (2017), Crowley, Chandran (2022), Imbrie (2016), ...
Captures out-of-equilibrium dynamics
Predicts the eigenstates properties
M. Schreiber et al. Science (2015)
Serbyn, Papic, Abanin (2013); Bauer, Nayak (2014); Huse, Nandkishore, Oganesyan (2014)
9
Anderson insulator
disorder \(h \)
Interaction \(\Delta\)
Ergodic
Many-body localized (?)
9
Anderson insulator
disorder \(h \)
Interaction \(\Delta\)
Ergodic
Many-body localized (?)
9
Suntajs et al, PRE (2020)
Suntajs et al, PRB (2020)
Panda et al EPL (2019)
Abanin et al (2021)
Sels, Polkovnikov (2021)
LeBlond et al (2021)
Sierant & Zakrewski PRB (2022)
Morningstar et al (2022)
Evers, Modak, Bera (2023)
Long et al (2023)
Ha et al (2023)
Weisse, Gerstner, Sierker (2024)
...
Strong finite-size effects
Ultraslow dynamics
MBL "crisis"
Strong finite-size effects
Ultraslow dynamics
Suntajs et al, PRE (2020)
Suntajs et al, PRB (2020)
Panda et al EPL (2019)
Abanin et al (2021)
Sels, Polkovnikov (2021)
LeBlond et al (2021)
Sierant & Zakrewski PRB (2022)
Morningstar et al (2022)
Evers, Modak, Bera (2023)
Long et al (2023)
Ha et al (2023)
Weisse, Gerstner, Sierker (2024)
...
MBL "crisis"
10
\(L \rightarrow \infty\)
Kiefer-Emmanouilidis et al (2020), Suntajs et al (2020), Sels, Polkovnikov (2021), Wiesse et al (2024),...
Evers et al (2023),Long (2023)...
JC, Alet, Laflorencie (2024), Laflorencie et al (2025)
Sierant et al(2020), Morningstar et al, (2022) , Crowley, Chandran (2022), Szoldra et al (2024), Nieda et al (2024), Scoquart et al (2025)....
Weiner et al (2019), Sierant, Zakrewski (2022),
Biroli et al (2024)
Absence of MBL phase
Single transition from ergodic to MBL (potentially very large \(h_c\))
Intermediate phase (nature differs depending on the paper)
h
h
h
11
\(L \rightarrow \infty\)
Kiefer-Emmanouilidis et al (2020), Suntajs et al (2020), Sels, Polkovnikov (2021), Wiesse et al (2024),...
Evers et al (2023),Long (2023)...
JC, Alet, Laflorencie (2024), Laflorencie et al (2025)
Sierant et al(2020), Morningstar et al, (2022) , Crowley, Chandran (2022), Szoldra et al (2024), Nieda et al (2024), Scoquart et al (2025)....
Weiner et al (2019), Sierant, Zakrewski (2022),
Biroli et al (2024)
Absence of MBL phase
Single transition from ergodic to MBL (potentially very large \(h_c\))
Intermediate phase (nature differs depending on the paper)
h
h
h
Morningstar et al, PRB 105 (2022)
10
\(L \rightarrow \infty\)
Kiefer-Emmanouilidis et al (2020), Suntajs et al (2020), Sels, Polkovnikov (2021), Wiesse et al (2024),...
Evers et al (2023),Long (2023)...
JC, Alet, Laflorencie (2024), Laflorencie et al (2025)
Sierant et al(2020), Morningstar et al, (2022) , Crowley, Chandran (2022), Szoldra et al (2024), Nieda et al (2024), Scoquart et al (2025)....
Weiner et al (2019), Sierant, Zakrewski (2022),
Biroli et al (2024)
Morningstar et al, PRB 105 (2022)
Absence of MBL phase
Single transition from ergodic to MBL (potentially very large \(h_c\))
Intermediate phase (nature differs depending on the paper)
h
h
h
avalanche instability
De Roeck & Huveneers (2017), Luitz, De Roeck & Huveneers (2017),
Thiery et al (2018); Crowley and Chandran (2020), Crowley and Chandran (2022)
Small ergodic region triggers runaway delocalization
10
\(L \rightarrow \infty\)
Kiefer-Emmanouilidis et al (2020), Suntajs et al (2020), Sels, Polkovnikov (2021), Wiesse et al (2024),...
Evers et al (2023),Long (2023)...
JC, Alet, Laflorencie (2024), Laflorencie et al (2025)
Sierant et al(2020), Morningstar et al, (2022) , Crowley, Chandran (2022), Szoldra et al (2024), Nieda et al (2024), Scoquart et al (2025)....
Weiner et al (2019), Sierant, Zakrewski (2022),
Biroli et al (2024)
Morningstar et al, PRB 105 (2022)
many-body resonances
Gopalakrishnan et al (2015)
Villalonga and Clark (2020)
Garratt et al (2021)
Crowley and Chandran (2022)
Morningstar et al (2022)
MBL is destabilized by resonances between localized eigenstates
avalanche instability
Absence of MBL phase
Single transition from ergodic to MBL (potentially very large \(h_c\))
Intermediate phase (nature differs depending on the paper)
h
h
h
10
11
Resonances between more localized many-body states
Gopalakrishnan et al (2015); Kjäll (2018); Villalonga and Clark (2020); Garratt et al (2021); Crowley and Chandran (2022); Morningstar et al (2022)
11
Resonances between more localized many-body states
Gopalakrishnan et al (2015); Kjäll (2018); Villalonga and Clark (2020); Garratt et al (2021); Crowley and Chandran (2022); Morningstar et al (2022)
11
Resonances between more localized many-body states
Gopalakrishnan et al (2015); Kjäll (2018); Villalonga and Clark (2020); Garratt et al (2021); Crowley and Chandran (2022); Morningstar et al (2022)
11
\(r\)
\(r\)
\(\pm\)
Perturb away from very strong disorder
Resonances between more localized many-body states
Gopalakrishnan et al (2015); Kjäll (2018); Villalonga and Clark (2020); Garratt et al (2021); Crowley and Chandran (2022); Morningstar et al (2022)
Hints in several works but extremely challenging to characterize
12
\(h/J \)
\(\Delta/J\)
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
13
Localized
Delocalized
It depends
\(|C^{\alpha,\alpha}_{r} |= A e^{-r /\xi_{\alpha}}\)
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
13
Localized
Delocalized
It depends
\(|C^{\alpha,\alpha}_{r} |= A e^{-r /\xi_{\alpha}}\)
\(C_{ij}^{zz} \rightarrow \langle n_i n_{j} \rangle - \langle n_i \rangle \langle n_{j} \rangle\)
From spin to bosons : \(n_i = S_i^{z} + 1/2\)
Density-density correlations
Aubry-André model
Lukin et al, Science (2019)
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
13
Localized
Delocalized
It depends
\(|C^{\alpha,\alpha}_{r} |= A e^{-r /\xi_{\alpha}}\)
\(C_{ij}^{zz} \rightarrow \langle n_i n_{j} \rangle - \langle n_i \rangle \langle n_{j} \rangle\)
From spin to bosons : \(n_i = S_i^{z} + 1/2\)
Density-density correlations
Main theoretical works*:
Aubry-André model
Pal & Huse, PRB (2010); Lim, Sheng, PRB (2016)
Localization lengths are short in MBL
Varma et al., PRB (2019)
Character of short-range distributions
Colmenarez et al, SciPost (2019)
*Other works focus on QMI / on weaker disorders / on time evolution
Correlations as a probe of the transition...
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
Lukin et al, Science (2019)
13
Distance-dependent \(|C^{\alpha\alpha}_r|\) :
see e.g.
Pal & Huse (2010)
Varma et al. (2019)
Villalonga and Clark (2020)
Colmenarez et al (2019)
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
14
Distance-dependent \(|C^{\alpha\alpha}_r|\) :
see e.g.
Pal & Huse (2010)
Varma et al. (2019)
Villalonga and Clark (2020)
Colmenarez et al (2019)
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
14
Distance-dependent \(|C^{\alpha\alpha}_r|\) :
Systemwide \(|C^{\alpha\alpha}_r|\) : \(r = L/2\)
see e.g.
Pal & Huse (2010)
Varma et al. (2019)
Villalonga and Clark (2020)
Colmenarez et al (2019)
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
14
Distance-dependent \(|C^{\alpha\alpha}_r|\) :
Systemwide \(|C^{\alpha\alpha}_r|\) : \(r = L/2\)
see e.g.
Pal & Huse (2010)
Varma et al. (2019)
Villalonga and Clark (2020)
Colmenarez et al (2019)
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
14
Distance-dependent \(|C^{\alpha\alpha}_r|\) :
Systemwide \(|C^{\alpha\alpha}_r|\) : \(r = L/2\)
see e.g.
Pal & Huse (2010)
Varma et al. (2019)
Villalonga and Clark (2020)
Colmenarez et al (2019)
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
14
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
15
15
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
\(h = 5\)
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
15
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
\(\xi_x \approx 2 \xi_z\) : XX correlations dominate
15
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
\(\xi_x \approx 2 \xi_z\) : XX correlations dominate
Random vector
15
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
\(\xi_x \approx 2 \xi_z\) : XX correlations dominate
Random vector
15
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
\(\xi_x \approx 2 \xi_z\) : XX correlations dominate
Random vector
Total spin conservation
15
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
\(\xi_x \approx 2 \xi_z\) : XX correlations dominate
Random vector
Total spin conservation
Random state : XX
finite \(\xi_x\)
15
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
\(\xi_x \approx 2 \xi_z\) : XX correlations dominate
Random vector
XXZ, \(h = 1, \Delta = 1\)
finite \(\xi_x\)
15
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
\(\xi_x \approx 2 \xi_z\) : XX correlations dominate
Random vector
XXZ, \(h = 1, \Delta = 1\)
finite \(\xi_x\)
15
Ergodic typical eigenstate = random vector
Anderson localized \(\Delta = 0\)
\(\xi_x \approx 2 \xi_z\) : XX correlations dominate
ZZ correlations dominate
Random vector
XXZ, \(h = 1, \Delta = 1\)
finite \(\xi_x\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
\(C_{r}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+r}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+r}^{\alpha} \rangle\)
15
14
Random vector
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
16
\(C_{L/2}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+L/2}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+L/2}^{\alpha} \rangle\)
Random vector
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
Extrapolated transition
Standard estimates lead to an extrapolated transition line \(h_c(\Delta)\)
14
16
Random vector
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
Extrapolated transition
Standard estimates lead to an extrapolated transition line \(h_c(\Delta)\)
Deep MBL
MBL and AL are connected from the point of view of correlations \(\xi_z, \xi_x\) at weak interactions
14
16
Random vector
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
Extrapolated transition
Standard estimates lead to an extrapolated transition line \(h_c(\Delta)\)
An inversion of the dominant correlations occurs deeper in the MBL regime
Deep MBL
MBL and AL are connected from the point of view of correlations \(\xi_z, \xi_x\) at weak interactions
14
16
Random vector
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
Extrapolated transition
Standard estimates lead to an extrapolated transition line \(h_c(\Delta)\)
An inversion of the dominant correlations occurs deeper in the MBL regime
Deep MBL
MBL and AL are connected from the point of view of correlations \(\xi_z, \xi_x\) at weak interactions
?
14
16
17
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
XX
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
17
XX
Limited weight at large correlations
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
17
ZZ
XX
Non-zero probability of large correlations
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
Limited weight at large correlations
17
18
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
Semi-log
\(C_{L/2}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+L/2}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+L/2}^{\alpha} \rangle\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
Semi-log
Average
\(\overline{|C^{zz}_{L/2}|}\)
18
\(C_{L/2}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+L/2}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+L/2}^{\alpha} \rangle\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
Average
\(\overline{|C^{zz}_{L/2}|}\)
vs typical
\(\exp(\overline{\ln|C^{zz}_{L/2}|})\)
Semi-log
18
\(C_{L/2}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+L/2}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+L/2}^{\alpha} \rangle\)
JC, F. Alet, N. Laflorencie, PRL 133 and PRB 110, (2024)
Average
\(\overline{|C^{zz}_{L/2}|}\)
vs typical
\(\exp(\overline{\ln|C^{zz}_{L/2}|})\)
Semi-log
Log-log
18
\(C_{L/2}^{\alpha\alpha} = \langle S_i^{\alpha} S_{i+L/2}^{\alpha} \rangle - \langle S_i^{\alpha} \rangle \langle S_{i+L/2}^{\alpha} \rangle\)
19
Average of the maximum over all eigenstates
Up to \(h \sim 20-25\)
N. Laflorencie, JC, F. Alet, arXiv:2504.10566
20
N. Laflorencie, JC, F. Alet, arXiv:2504.10566
\(L = 20, h = 12\)
N. Laflorencie, JC, F. Alet, arXiv:2504.10566
\(L = 20, h = 12\)
20
N. Laflorencie, JC, F. Alet, arXiv:2504.10566
\(L = 20, h = 12\)
20
21
JC, F. Alet, N. Laflorencie, PRB 110, (2024)
N. Laflorencie, JC, F. Alet, arXiv:2504.10566
A. Padhan et al. arXiv2510.xxxx
Diagram of the correlations regimes:
21
JC, F. Alet, N. Laflorencie, PRB 110, (2024)
N. Laflorencie, JC, F. Alet, arXiv:2504.10566
A. Padhan et al. arXiv2510.xxxx
Diagram of the correlations regimes:
Average: power-law
Average: exponential
21
JC, F. Alet, N. Laflorencie, PRB 110, (2024)
N. Laflorencie, JC, F. Alet, arXiv:2504.10566
A. Padhan et al. arXiv2510.xxxx
Diagram of the correlations regimes:
Particular realizations of disorder?
Unclear because very fine-tuned resonances
Average: power-law
Average: exponential
21
JC, F. Alet, N. Laflorencie, PRB 110, (2024)
N. Laflorencie, JC, F. Alet, arXiv:2504.10566
A. Padhan et al. arXiv2510.xxxx
Diagram of the correlations regimes:
Particular realizations of disorder?
Related to avalanches and rare regions?
Ashirbad Padhan
Unclear because very fine-tuned resonances
Probably not : we find them in quasiperiodic models too!
Average: power-law
Average: exponential
21
JC, F. Alet, N. Laflorencie, PRB 110, (2024)
N. Laflorencie, JC, F. Alet, arXiv:2504.10566
A. Padhan et al. arXiv2510.xxxx
Diagram of the correlations regimes:
Particular realizations of disorder?
Related to avalanches and rare regions?
Unclear because very fine-tuned resonances
Probably not : we find them in quasiperiodic models too!
Can they destabilize MBL?
That is the main question!
Average: power-law
Average: exponential
Ashirbad Padhan
\(|\psi(x)|^2\)
\(\xi(h, E)\)
Anderson localization
in 1D: \(\forall E\), states are localized
Interactions:
Ergodic (thermal) phase vs. Many-body localization
\(|\psi(x)|^2\)
\(\xi(h, E)\)
Anderson localization
in 1D: \(\forall E\), states are localized
Interactions:
Ergodic (thermal) phase vs. Many-body localization
OUR CONTRIBUTION:
1. Large correlations at maximal distance deep in the MBL regime.
2. They can dominate the average
3. They signal cat-like states. Toy model to spot them systematically.
Links with dynamics and with Fock space rare events?
In the Anderson basis:
Anderson
orbitals \(m\)
JC, F. Alet, N. Laflorencie, PRL, (2024)
JC, F. Alet, N. Laflorencie, PRB 110, (2024)
JC, F. Alet, N. Laflorencie, PRB 110, (2024)
JC, F. Alet, N. Laflorencie, PRB 110, (2024)
\(h/J \)
\(h/J \)
JC, F. Alet, N. Laflorencie, PRL 133, 116502 (2024)
Model : t-V with usual XXZ units, except V = 2t
Model : t-V with usual XXZ units, except V = 2t
JC, F. Alet, N. Laflorencie, PRB 110, (2024)
N. Laflorencie, JC, F. Alet, arXiv:2504.10566
A. Padhan et al. arXiv2510.xxxx
JC, F. Alet, N. Laflorencie, PRB 110, (2024)
N. Laflorencie, JC, F. Alet, arXiv:2504.10566
A. Padhan et al. arXiv2510.xxxx
Anderson
No growth
of entanglement
J. H. Bardarson, F. Pollmann, and J. E. Moore, PRL 109, 017202 (2012)
M. Znidaric, T. Prosen, and P. Prelovsek PRB 77, 064426 (2008)
Log growth
of entanglement
Initial \(S^z\) basis random product state
+
TEBD
W = 5