Christopher Makler
Stanford University Department of Economics
Econ 50: Lecture 3
Special Guest: Monday
visiting Stanford from Princeton University
QUIZ FOR MONDAY IS DUE SUNDAY NIGHT AT 8PM THIS WEEK ONLY!
previously in Econ 50...
Choosing bundles of two goods
Good 1 \((x_1)\)
Good 2 \((x_2)\)
Given any bundle \(A\),
the choice space may be divided
into three regions:
preferred to A
dispreferred to A
indifferent to A
A
The indifference curve through A connects all the bundles indifferent to A.
Indifference curve
through A
Two "Goods" (e.g. apples and bananas)
A bundle is some quantity of each good
Can plot this in a graph with \(x_1\) on the horizontal axis and \(x_2\) on the vertical axis
What tradeoff is represented by moving
from bundle A to bundle B?
ANY SLOPE IN GOOD 1 - GOOD 2 SPACE
IS MEASURED IN
UNITS OF GOOD 2 PER UNIT OF GOOD 1
ANY SLOPE IN GOOD 1 - GOOD 2 SPACE
IS MEASURED IN
UNITS OF GOOD 2 PER UNIT OF GOOD 1
TW: HORRIBLE STROBE EFFECT!
🍏🍏
🍏🍏
🍏🍏
🍏🍏
🍏🍏
🍌🍌🍌🍌
🍌🍌🍌🍌
🍌🍌🍌🍌
🍌🍌🍌🍌
🍌🍌🍌🍌
🍌🍌🍌🍌
🍏🍏
🍏🍏
🍏🍏
🍏🍏
🍏🍏
🍏🍏
🍌🍌🍌🍌
🍌🍌🍌🍌
🍌🍌🍌🍌
🍌🍌🍌🍌
🍌🍌🍌🍌
Suppose you were indifferent between the following two bundles:
Starting at bundle X,
you would be willing
to give up 4 bananas
to get 2 apples
Let apples be good 1, and bananas be good 2.
Starting at bundle Y,
you would be willing
to give up 2 apples
to get 4 bananas
Visually: the MRS is the magnitude of the slope
of an indifference curve
[INDEPENDENT VARIABLES]
[DEPENDENT VARIABLE]
the height of the function changes
per distance traveled to the right
rate at which
Example:
Pretty close to \(3 \times 70\)!
the height of the function changes
per distance traveled East
rate at which
the height of the function changes
per distance traveled North
rate at which
Given a utility function \(u(x_1,x_2)\),
we can interpret the partial derivatives
as the "marginal utility" from
another unit of either good:
UTILS
UNITS OF GOOD 1
UTILS
UNITS OF GOOD 2
The total change in the height of the function due to a small increase in \(x\)
The amount \(f\) changes due to the increase in \(x\)
[indirect effect through \(y\)]
The amount \(f\) changes due to an increase in \(y\)
The amount \(y\) changes due to an increase in \(x\)
[direct effect from \(x\)]
Take total derivative of both sides with respect to x:
Solve for \(dy/dx\):
IMPLICIT FUNCTION THEOREM
pollev.com/chrismakler
Consider the multivariable function
What is the slope of the level set passing through the point (1, 5)?
Along an indifference curve, all bundles will produce the same amount of utility
In other words, each indifference curve
is a level set of the utility function.
The slope of an indifference curve is the MRS. By the implicit function theorem,
UTILS
UNITS OF GOOD 1
UTILS
UNITS OF GOOD 2
Along an indifference curve, all bundles will produce the same amount of utility
In other words, each indifference curve
is a level set of the utility function.
The slope of an indifference curve is the MRS. By the implicit function theorem,
UNITS OF GOOD 1
UNITS OF GOOD 2
If you give up \(\Delta x_2\) units of good 2, how much utility do you lose?
If you get \(\Delta x_1\) units of good 1, how much utility do you gain?
If you end up with the same utility as you begin with:
pollev.com/chrismakler
What is the MRS of the utility function \(u(x_1,x_2) = x_1x_2\)?
MRS = 4
MRS = 1
We've asserted that all (rational) preferences are complete and transitive.
There are some additional properties which are true of some preferences:
Some goods provide positive marginal utility only up to a point, beyond which consuming more of them actually decreases your utility.
Strict monotonicity: any increase in any good strictly increases utility (\(MU > 0\) for all goods)
Weak monotonicity: no increase in any good will strictly decrease utility (\(MU \ge 0\) for all goods)
Example: Pfizer's COVID-19 vaccine has a dose of 0.3mL, Moderna's has a dose of 0.5mL
Take any two bundles, \(A\) and \(B\), between which you are indifferent.
Would you rather have a convex combination of those two bundles,
than have either of those bundles themselves?
If you would always answer yes, your preferences are convex.
Take any two bundles, \(A\) and \(B\), between which you are indifferent.
Would you rather have a convex combination of those two bundles,
than have either of those bundles themselves?
If you would always answer no, your preferences are concave.
1. Convexity does not imply you always want equal numbers of things.
2. It's preferences which are convex, not the utility function.
Continuous: utility functions don't have "jumps"
Smooth: marginal utilities don't have "jumps"
Counter-example: vaccine dose example
Counter-example: Leontief/Perfect Complements utility function
If preferences are strictly monotonic, strictly convex, continuous, and smooth, then:
Indifference curves are smooth, downward-sloping, and bowed in toward the origin
The MRS is diminishing as you move down and to the right along an indifference curve
Good 1 \((x_1)\)
Good 2 \((x_2)\)
"Law of Diminishing MRS"
UNITS OF GOOD 1
UNITS OF GOOD 2
IMPLICIT FUNCTION THEOREM
The Marginal Rate of Substitution is the magnitude of the slope of an indifference curve; so, by the implicit function theorem: